The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dyn...The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.展开更多
基金Project(52178405) supported by the National Natural Science Foundation of ChinaProject(Z191100002519010) supported by the Project of Beijing Municipal Science&Technology Plan,ChinaProjects(2018JBZ003, 2020JBZD013) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.