Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o...Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.展开更多
Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphi...Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H...BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC.展开更多
Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broile...Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.展开更多
Postprandial metabolism plays major roles in many pathological conditions.The n-6/n-3 polyunsaturated fatty acid(PUFA)ratio is closely related to various physiological disorders.This study aimed to investigate the eff...Postprandial metabolism plays major roles in many pathological conditions.The n-6/n-3 polyunsaturated fatty acid(PUFA)ratio is closely related to various physiological disorders.This study aimed to investigate the effects of high fat meals with different n-6/n-3 PUFA ratios on postprandial metabolism in normal control(NC)and hypertriglyceridemia(HTG)rats.The postprandial response of triglyceride(TG)in HTG groups was higher than that in NC groups after different n-6/n-3 PUFA ratio meals.The HTG groups showed higher postprandial total cholesterol(TC)responses than NC groups after 1:1 and 20:1 ratio meals.The 5:1 n-6/n-3 PUFA ratio elicited lower postprandial responses of tumor necrosis factorα(TNF-α)than 1:1 and 10:1 ratios in HTG groups.The postprandial malondialdehyde(MDA)response was lower after a 5:1 n-6/n-3 PUFA ratio meal than 1:1 and 20:1 ratio meals in HTG groups.The 1:1 ratio resulted in a lower postprandial reactive oxygen species(ROS)level than 5:1 and 10:1 n-6/n-3 PUFA ratios in NC groups.The results showed that a low n-6/n-3 PUFA ratio improved postprandial dysmetabolism induced by a high fat meal in NC and HTG rats.A high n-6/n-3 PUFA ratio increased the difference in postprandial metabolism between NC and HTG rats.展开更多
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig...Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against...BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against obesity via diverse me-chanisms,while its specific effects on visceral adipose tissue(VAT)remain to be fully elucidated.AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes.METHODS Metabolic parameters were collected,encompassing body weight,weights of visceral and subcutaneous adipose tissues(VAT and SAT),random blood glucose levels,glucose tolerance,insulin tolerance,and overall body composition.The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software.Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses,respectively.RESULTS Feeding a high-fat diet(HFD)moderately increased the weights of both VAT and SAT,but this increase was mitigated by the protective effect of endogenous E2.Conversely,ovariectomy(OVX)led to a significant increase in VAT weight and the VAT/SAT weight ratio,and this increase was also reversed with E2 treatment.Notably,OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone,signaling a widespread reduction in lipid metabolic activity,which was completely counteracted by E2 adminis-tration.This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level.CONCLUSION In conclusion,the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat,leading to a universally decreased lipid metabolic status in E2 deficient mice.E2 treatment effectively reversed this condition,shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.展开更多
Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and ...Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance,lipid metabolism,intestinal barrier,cecal microbiota,and inflammation in fattening bulls.Thirty finishing Angus bulls(626±69 kg,21±0.5 months)were divided into 3 treatments according to the randomized block design:(1)control diet without additional fat(CON),(2)CON+2.5%palmitic acid calcium salt(PA,90%C16:0),and(3)CON+2.5%mixed fatty acid calcium salt(MA,60%C16:0+30%cis-9 C18:1).The experiment lasted for 104 d,after which all the bulls were slaughtered and sampled for analysis.Results MA tended to reduce 0–52 d dry matter intake compared to PA(DMI,P=0.052).Compared with CON and MA,PA significantly increased 0–52 d average daily gain(ADG,P=0.027).PA tended to improve the 0–52 d feed conversion rate compared with CON(FCR,P=0.088).Both PA and MA had no significant effect on 52–104 days of DMI,ADG and FCR(P>0.05).PA tended to improve plasma triglycerides compared with MA(P=0.077),significantly increased plasma cholesterol(P=0.002)and tended to improve subcutaneous adipose weight(P=0.066)when compared with CON and MA.Both PA and MA increased visceral adipose weight compared with CON(P=0.021).Only PA increased the colonization of Rikenellaceae,Ruminococcus and Proteobacteria in the cecum,and MA increased Akkermansia abundance(P<0.05).Compared with CON,both PA and MA down-regulated the m RNA expression of Claudin-1 in the jejunum(P<0.001),increased plasma diamine oxidase(DAO,P<0.001)and lipopolysaccharide(LPS,P=0.045).Compared with CON and MA,PA down-regulated the ZO-1 in the jejunum(P<0.001)and increased plasma LPS-binding protein(LBP,P<0.001).Compared with CON,only PA down-regulated the Occludin in the jejunum(P=0.013).Compared with CON,PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose(P<0.001)and increased plasma IL-6(P<0.001).Compared with CON,only PA up-regulated the TNF-αin the visceral adipose(P=0.01).Compared with CON and MA,PA up-regulated IL-6 in the visceral adipose(P<0.001),increased plasma TNF-α(P<0.001),and reduced the Ig G content in plasma(P=0.035).Compared with CON,PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle(P<0.05),while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1.However,neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON(P>0.05).Conclusions MA containing 30%cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity,adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization,improving colonization of Akkermansia,reducing intestinal barrier damage,and down-regulating NF-κB activation.展开更多
Background:Previous studies have shown that exogenous short-chain fatty acids(SCFAs)introduction attenuated the body fat deposition in conventional mice and pigs.However,limited studies have evaluated the effects of e...Background:Previous studies have shown that exogenous short-chain fatty acids(SCFAs)introduction attenuated the body fat deposition in conventional mice and pigs.However,limited studies have evaluated the effects of exogenously introduced SCFAs on the lipid and glucose metabolism independently of the gut microbiota.This study was to investigate the effects of exogenous introduction of SCFAs on the lipid and glucose metabolism in a germ-free(GF)pig model.Methods:Twelve hysterectomy-derived newborn pigs were reared in six sterile isolators.All pigs were hand-fed with sterile milk powder for 21 d,then the sterile feed was introduced to pigs for another 21 d.In the second 21-d period,six pigs were orally administrated with 25 mL/kg sterile saline per day and considered as the GF group,while the other six pigs were orally administrated with 25 mL/kg SCFAs mixture(acetic,propionic,and butyric acids,45,15,and 11 mmol/L,respectively)per day and regarded as FA group.Results:Orally administrated with SCFAs tended to increase the adiponectin concentration in serum,enhance the CPT-1 activity in longissimus dorsi,and upregulate the ANGPTL4 mRNA expression level in colon(P<0.10).Meanwhile,the mRNA abundances of ACC,FAS,and SREBP-1C in liver and CD36 in longissimus dorsi of the FA group were decreased(P<0.05)compared with those in the GF group.Besides,the mRNA expression of PGC-1αin liver and LPL in longissimus dorsi tended to(P<0.10)upregulate and downregulate respectively in the FA group.Moreover,oral administration of SCFAs tended to increase the protein level of GPR43(P<0.10)and decrease the protein level of ACC(P<0.10)in liver.Also,oral administration of SCFAs upregulated the p-AMPK/AMPK ratio and the mRNA expressions of GLUT-2 and GYS2 in liver(P<0.05).In addition,the metabolic pathway associated with the biosynthesis of unsaturated fatty acids was most significantly promoted(P<0.05)by oral administration of SCFAs.Conclusions:Exogenous introduction of SCFAs might attenuate the fat deposition and to some extent improve the glucose control in the pig model,which occurred independently of the gut microbiota.展开更多
Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to m...Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to moderate intensity aerobic exercise, fat plays an important role providing energy. Especially when the movement lasts for more than 3 ~ 4h, energy provided by fat can account for 70% to 90% of total energy metabolism. Many people use many means and methods in order to increase the proportion of fat oxidation providing for energy in the movement and save glucose consumption in vivo, improving the body' s endurance. On the other hand, endurance exercise can burn fat properly, and play an important role to reduce accumulation of body fat, prevent hyperlipidemia and improve lipid levels.展开更多
BACKGROUND Studies have shown that a high-fat diet(HFD) can alter gut microbiota(GM)homeostasis and participate in lipid metabolism disorders associated with obesity.Therefore, regulating the construction of GM with t...BACKGROUND Studies have shown that a high-fat diet(HFD) can alter gut microbiota(GM)homeostasis and participate in lipid metabolism disorders associated with obesity.Therefore, regulating the construction of GM with the balance of lipid metabolism has become essential for treating obesity. Salvia miltiorrhiza extract(Sal), a common traditional Chinese medicine, has been proven effective against atherosclerosis, hyperlipidemia, obesity, and other dyslipidemia-related diseases.AIM To investigate the anti-obesity effects of Sal in rats with HFD-induced obesity, and explore the underlying mechanism by focusing on GM and lipid metabolism.METHODS Obesity was induced in rats with an HFD for 7 wk, and Sal(0.675 g/1.35 g/2.70g/kg/d) was administered to treat obese rats for 8 wk. The therapeutic effect was evaluated by body weight, body fat index, waistline, and serum lipid level. Lipid factors(cAMP, PKA, and HSL) in liver and fat homogenates were analyzed by ELISA. The effect of Sal on GM and lipid metabolism was assessed by 16S rRNAbased microbiota analysis and untargeted lipidomic analysis(LC-MS/MS),respectively.RESULTS Sal treatment markedly reduced weight, body fat index, serum triglycerides(TG), total cholesterol(TC), low-density lipoprotein, glucose, free fatty acid, hepatic lipid accumulation, and adipocyte vacuolation, and increased serum high-density lipoprotein(HDL-C) in rats with HFD-induced obesity. These effects were associated with increased concentrations of lipid factors such as c AMP, PKA, and HSL in the liver and adipose tissues, enhanced gut integrity, and improved lipid metabolism. GM analysis revealed that Sal could reverse HFD-induced dysbacteriosis by promoting the abundance of Actinobacteriota and Proteobacteria, and decreasing the growth of Firmicutes and Desulfobacterita. Furthermore, LC-MS/MS analysis indicated that Sal decreased TGs(TG18:2/18:2/20:4, TG16:0/18:2/22:6), DGs(DG14:0/22:6, DG22:6/22:6), CL(18:2/18:1/18:1/20:0), and increased ceramides(Cers;Cer d16:0/21:0, Cer d16:1/24:1),(O-acyl)-ω-hydroxy fatty acids(OAHFAs;OAHFA18:0/14:0) in the feces of rats. Spearman’s correlation analysis further indicated that TGs, DGs, and CL were negatively related to the abundance of Facklamia and Dubosiella, and positively correlated with Blautia and Quinella, while OAHFAs and Cers were the opposite.CONCLUSION Sal has an anti-obesity effect by regulating the GM and lipid metabolism.展开更多
Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hyp...Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hypoxic 5-day group (HS), and hypoxic 15-day group (H15). Animals of H5 and 15 groups were exposed to hypobaric hypoxia chamber simulating 5 000 m high altitude for 5 d or 15 d respectively, 23 h per day. H0 group stayed outside of chamber The level of fatty acid oxidation and uptake, and glucose oxidation were examined, and the level of non-esterified fatty acids (NEFA), ATP and phosphocreatine (PCr) were also assayed in rat skeletal muscles. Results: The contents of ATP and PCr in H5 group were lower than those in H0 and H15 groups (P〈0.05), while there was no significant difference between H0 and H15. Compared with H0, the blood NEFA level in all hypoxia groups was increased significantly (P〈0.05). The muscle NEFA level in H15 group was greatly higher than that in H0 and H5 groups. The rates of fatty acid oxidation and uptake in H15 group were significantly higher than those in H0 and H5 groups (P〈0.05), and the rate of glucose oxidation in all hypoxia groups was significantly decreased than that in H0 group (P〈0.05). Conclusion: It is concluded that the enhanced fat oxidation may be one of the mechanisms in the maintenance of energy homeostasis after hypobaric hypoxic acclimation.展开更多
Background:Enteromorpha prolifera(E.prolifera)polysaccharide has become a promising feed additive with a variety of physiological activities,such as anti-oxidant,anti-cancer,anti-diabetic,immunomodulatory,hypolipidemi...Background:Enteromorpha prolifera(E.prolifera)polysaccharide has become a promising feed additive with a variety of physiological activities,such as anti-oxidant,anti-cancer,anti-diabetic,immunomodulatory,hypolipidemic,and cation chelating ability.However,whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown.This study was conducted to investigate the effects of E.prolifera polysaccharide(EP)-Zn supplementation on growth performance,amino acid,and fatty acid metabolism in chicken.Methods:A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates,12 chickens per replicate,and fed either the basal diet(control group)or basal diet plus E.prolifera polysaccharide-Zinc(400 mg EP-Zn/kg diet).Results:Dietary EP-Zn supplementation significantly increased(P<0.05)the body weight,average daily gain,muscle antioxidant activity,serum HDL level,and reduced serum TG and LDL concentration.In addition,dietary EPZn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum,ileum,breast muscle,and liver tissues(P<0.05).Compared with the control group,breast meat from chickens fed EP-Zn had higher(P<0.05)Pro and Asp content,and lower(P<0.05)Val,Phe,Gly,and Cys free amino acid content.Furthermore,EP-Zn supplementation upregulated(P<0.05)the mRNA expressions of mTOR and anti-oxidant related genes,while down-regulated protein degradation related genes in the breast muscle.Breast meat from EP-Zn supplemented group had significantly lower(P<0.05)proportions ofΣn-3 PUFA,and a higher percentage ofΣn-6 PUFA and the ratio of n-6/n-3 PUFA.Besides,EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue.Conclusions:It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility,enhances amino acid metabolism,and decreases oxidative stress-associated protein breakdown,thereby improving the growth performance.Furthermore,it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression.展开更多
Nonalcoholic fatty liver disease (NAFLD), an pathologies characterized by fatty accumulation in escalating health problem worldwide, covers a spectrum of hepatocytes in early stages, with potential progression to li...Nonalcoholic fatty liver disease (NAFLD), an pathologies characterized by fatty accumulation in escalating health problem worldwide, covers a spectrum of hepatocytes in early stages, with potential progression to liver inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an extracellular role in lipid transport between vital organs through circulation, but also play an important intracellu- lar role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metab- olism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, potential diagnosis, and treatment of NAFLD.展开更多
This study aims to investigate the effects of EGCG on the lipid deposition and liver anti-oxidative capacity of broilers under heat stress.One hundred and ninety-two 2-week-old broilers were divided into four groups w...This study aims to investigate the effects of EGCG on the lipid deposition and liver anti-oxidative capacity of broilers under heat stress.One hundred and ninety-two 2-week-old broilers were divided into four groups with 6 replicates per group and 8 chickens per replicate:one thermoneutral control group(28℃,TN group),which was fed the basal diet,and three cyclic high-temperature groups(35℃from 7:00 to 19:00 h;28℃from 19:00 h to 7:00 h,heat stress(HS)group),which were fed the basal diet added with EGCG at doses of 0(HS0 group),300(HS300 group),and 600 mg/kg(HS600 group),respectively.The liver metabolism and lipid deposition indices were performed at 35 d of age.The results showed that heat stress decreased the activities of superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px),and the Nrf2 mRNA expression in liver,and increase significantly the levels of malondialdehyde(MDA)and the expression of LITAF,NF-KB,FAS,SREBP1 mRNA and the lipid deposition compared with TN group.EGCG(HS300 and HS600 group)increased the activities of SOD and GSH-Px and catalase(CAT),increased the Nrf2 mRNA expression,decreased the MDA contents,and reduced the lipid deposition and expression of LITAF,NF-KB,FAS and SREBP1 mRNA.In conclusion,the results of this study show that EGCG can improve liver antioxidative capacity to alleviate oxidative damage caused by heat stress.展开更多
Background: Excessive white fat accumulation in humans and other animals is associated with the development of multiple metabolic diseases. It is unknown whether dietary L-arginine supplementation reduces lipid deposi...Background: Excessive white fat accumulation in humans and other animals is associated with the development of multiple metabolic diseases. It is unknown whether dietary L-arginine supplementation reduces lipid deposition in high fat diet-fed Nile tilapia(Oreochromis niloticus).Results: In the present study, we found that dietary supplementation with 1% or 2% arginine decreased the deposition and concentration of fats in the liver;the concentrations of triglycerides, low-density lipoprotein, total cholesterol, and high-density lipoprotein in the serum;and the diameter of adipocytes in intraperitoneal adipose tissue. Compared with the un-supplementation control group, the hepatic activities of alanine aminotransferase,aspartate aminotransferase, and lactate dehydrogenase, and hepatic concentration of malondialdehyde were reduced but these for catalase and superoxide dismutase were enhanced by dietary supplementation with 2% arginine. Arginine supplementation reduced the total amounts of monounsaturated fatty acids, while increasing the total amounts of n-3 and n-6 polyunsaturated fatty acids in the liver. These effects of arginine were associated with reductions in mRNA levels for genes related to lipogenesis(sterol regulatory element-binding protein-1, acetyl-CoA carboxylase α, stearoyl-CoA desaturase, and fatty acid synthase) but increases in mRNA levels for genes involved in fatty acid β-oxidation(carnitine palmitoyltransferase 1α and peroxisome proliferator-activated receptor α). In addition, hepatic mRNA levels for Δ4 fatty acyl desaturase 2 and elongase 5 of very long-chain fatty acids were enhanced by arginine supplementation.Conclusion: These results revealed that dietary L-arginine supplementation to tilapia reduced high fat diet-induced fat deposition and fatty acid composition in the liver by regulating the expression of genes for lipid metabolism.展开更多
AIM: To assess the regulatory effect of microRNA-185 (miR-185) on lipid metabolism and the insulin signalling pathway in human HepG2 hepatocytes and a high-fat diet mouse model.
Foxtail millet(FM)whole grain has received special attention in recent years.To confirm the hypoglycemic effects of FM,we investigated the effects of FM supplementation on glucose metabolism and gut microbiota in rats...Foxtail millet(FM)whole grain has received special attention in recent years.To confirm the hypoglycemic effects of FM,we investigated the effects of FM supplementation on glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin(HFD/STZ)-induced diabetes.Specifically,we fully assessed the blood biochemical profiles,pancreatic histopathology,insulin-glucagon immunofluorescence,short-chain fatty acids,and gut microbiota composition of rats with HFD/STZ-induced diabetes before and after FM supplementation.Results showed that both 30% and 48% FM supplementation significantly decreased concentrations of fasting blood glucose,60-min blood glucose,and blood triglycerides(P<0.05);additionally,48% FM supplementation significantly improved blood glucose tolerance and insulin resistance(P<0.05).However,FM supplementation could not effectively repair damage to β-cells over a short period of time.In addition,4 weeks of 48% FM supplementation siginificantly increased the relative abundance of Bifidobacterium and concentration of butyrate,suggesting that the hypoglycemic effects of FM supplementation might be partially mediated by gut microbiota.Collectively,we found a dose-dependent relationship between FM supplementation and improvement of blood glucose metabolism,but did not find a synergistic effect between FM supplementation and metformin(Met)treatment.Our findings provide further support that consuming more whole-grain FM might be beneficial to individuals suffering from type 2 diabetes.展开更多
Background: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements for growth and feed efficiency, however, significant variation remains for performance and growt...Background: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements for growth and feed efficiency, however, significant variation remains for performance and growth traits. Production improvements have been coupled with unfavourable metabolic consequences, including immunological trade-offs for growth, and excess fat deposition. To determine whether interactions between fatty acid(FA) metabolism and innate immunity may be associated with performance variations commonly seen within commercial broiler flocks, total carcass lipid %, carcass and blood FA composition, as wel as genes involved with FA metabolism, immunity and cel ular stress were investigated in male birds of a broiler strain, layer strain and F1 layer × broiler cross at d 14 post hatch. Heterophil:lymphocyte ratios, relative organ weights and bodyweight data were also compared.Results: Broiler bodyweight(n = 12) was four times that of layers(n = 12) by d 14 and had significantly higher carcass fat percentage compared to the cross(n = 6; P = 0.002) and layers(P = 0.017) which were not significantly different from each other(P = 0.523). The carcass and whole blood FA analysis revealed differences in the FA composition between the three groups indicating altered FA metabolism, despite al being raised on the same diet. Genes associated with FA synthesis andβ-oxidation were upregulated in the broilers compared to the layers indicating a net overal increase in FA metabolism,which may be driven by the larger relative liver size as a percentage of bodyweight in the broilers. Genes involved in innate immunity such as TLR2 and TLR4, as wel as organel e stress indicators ERN1 and XBP1 were found to be nonsignificant, with the exception of high expression levels of XBP1 in layers compared to the cross and broilers. Additional y there was no difference in heterophil: lymphocytes between any of the birds.Conclusions: The results provide evidence that genetic selection may be associated with altered metabolic processes between broilers, layers and their F1 cross. Whilst there is no evidence of interactions between FA metabolism, innate immunity or cel ular stress, further investigations at later time points as growth and fat deposition increase would provide useful information as to the effects of divergent selection on key metabolic and immunological processes.展开更多
基金sponsored by National Natural Science Foundation of China (81800703 and 81970701)Beijing Nova Program (Z201100006820117 and 20220484181)+7 种基金Beijing Municipal Natural Science Foundation (7184252 and 7214258)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (BMU2021MX013)Peking University Clinical Scientist Training Program (BMU2023PYJH022)China Endocrine and Metabolism Young Scientific Talent Research Project (2022-N-02-01)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation (G2018030)。
文摘Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.
基金supported by the National Natural Science Foundation of China(31972267 and 3227253)the Chinese Universities Scientific Fund(2023TC109)。
文摘Aphids are major insect pests in agriculture and forestry worldwide.Following attacks by natural enemies,many aphids release an alarm pheromone to protect their population.In most aphids,the main component of the aphid alarm pheromone(AAP)is the sesquiterpene hydrocarbon(E)-β-farnesene(EβF).However,the mechanisms behind its biosynthesis and regulation remain poorly understood.In this study,we used the bird cherry–oat aphid Rhopalosiphum padi,which is an important wheat aphid,to investigate the regulatory mechanisms of EβF biosynthesis.Our results showed that EβF biosynthesis occurs during the mature embryo period and the molting period of the 1st-and 2nd-instar nymphs.Triglycerides provide the prerequisite material for EβF production and release.Based on transcriptome sequencing,RNAi analysis,hormone treatments,and quantitative measurements,we found that the biosynthesis of EβF utilizes acetyl coenzyme A produced from fatty acid degradation,which can be suppressed by juvenile hormone but it is promoted by 20-hydroxyecdysone through the modulation of fatty acid metabolism.This is the first systemic study on the modulation of EβF production in aphids.The results of our study provide insights into the molecular regulatory mechanisms of AAP biosynthesis,as well as valuable information for designing potential aphid control strategies.
基金National Natural Science Foundation of China,No.81460132Yunnan Pacific Department of Science,Technology-Kunming Medical University Applied Basic Research Joint Special Fund Project,No.2018FE001(-224).
文摘BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC.
基金financially supported by the National Natural Science Foundation of China(32102559)the Jiangsu Shuang Chuang Tuan Dui Program,China(JSSCTD202147)the Jiangsu Shuang Chuang Ren Cai Program,China(JSSCRC2021541)。
文摘Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.Several studies found that dietary supplemental manganese(Mn)could effectively reduce the abdominal fat deposition of broilers,but the underlying mechanisms remain unclear.The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition,and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.A total of 4201-d-old AA broilers(half males and half females)were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3(dietary Mn addition)×2(gender)factorial arrangement.Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg^(-1)(d 1-21)and 15.62 mg Mn kg^(-1)(d 22-42)by analysis or the basal diets supplemented with 110 mg Mn kg^(-1)(d 1-21)and 80 mg Mn kg^(-1)(d 22-42)as either the Mn sulfate or the Mn proteinate with moderate chelation strength(Mn-Prot M)for 42 d.The results showed that the interaction between dietary Mn addition and gender had no impact(P>0.05)on any of the measured parameters;abdominal fat percentage of broilers was decreased(P<0.003)by Mn addition;Mn addition increased(P<0.004)adipose triglyceride lipase(ATGL)activity,while Mn-Prot M decreased(P<0.002)the fatty acid synthase(FAS)activity in the abdominal fat of broilers compared to the control;Mn addition decreased(P<0.009)diacylglycerol acyltransferase 2(DGAT2)mRNA expression level and peroxisome proliferator-activated receptor γ(PPARγ)mRNA and protein expression levels,but up-regulated(P<0.05)the ATGL mRNA and protein expression levels in the abdominal fat of broilers.It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγand DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers,and Mn-Prot M was more effective in inhibiting the FAS acitivity.
基金supported by National Key Research and Development Plan(2016YFD0400604)National Natural Science Foundation of China(82073551).
文摘Postprandial metabolism plays major roles in many pathological conditions.The n-6/n-3 polyunsaturated fatty acid(PUFA)ratio is closely related to various physiological disorders.This study aimed to investigate the effects of high fat meals with different n-6/n-3 PUFA ratios on postprandial metabolism in normal control(NC)and hypertriglyceridemia(HTG)rats.The postprandial response of triglyceride(TG)in HTG groups was higher than that in NC groups after different n-6/n-3 PUFA ratio meals.The HTG groups showed higher postprandial total cholesterol(TC)responses than NC groups after 1:1 and 20:1 ratio meals.The 5:1 n-6/n-3 PUFA ratio elicited lower postprandial responses of tumor necrosis factorα(TNF-α)than 1:1 and 10:1 ratios in HTG groups.The postprandial malondialdehyde(MDA)response was lower after a 5:1 n-6/n-3 PUFA ratio meal than 1:1 and 20:1 ratio meals in HTG groups.The 1:1 ratio resulted in a lower postprandial reactive oxygen species(ROS)level than 5:1 and 10:1 n-6/n-3 PUFA ratios in NC groups.The results showed that a low n-6/n-3 PUFA ratio improved postprandial dysmetabolism induced by a high fat meal in NC and HTG rats.A high n-6/n-3 PUFA ratio increased the difference in postprandial metabolism between NC and HTG rats.
基金supported by the 12th Five-Year Plan for Science and Technology Development of China(2012BAD33B05).
文摘Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
基金Supported by National Natural Science Foundation of China,No.81270901 and No.81970672.
文摘BACKGROUND Visceral obesity is increasingly prevalent among adolescents and young adults and is commonly recognized as a risk factor for type 2 diabetes.Estrogen[17β-estradiol(E2)]is known to offer protection against obesity via diverse me-chanisms,while its specific effects on visceral adipose tissue(VAT)remain to be fully elucidated.AIM To investigate the impact of E2 on the gene expression profile within VAT of a mouse model of prediabetes.METHODS Metabolic parameters were collected,encompassing body weight,weights of visceral and subcutaneous adipose tissues(VAT and SAT),random blood glucose levels,glucose tolerance,insulin tolerance,and overall body composition.The gene expression profiles of VAT were quantified utilizing the Whole Mouse Genome Oligo Microarray and subsequently analyzed through Agilent Feature Extraction software.Functional and pathway analyses were conducted employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses,respectively.RESULTS Feeding a high-fat diet(HFD)moderately increased the weights of both VAT and SAT,but this increase was mitigated by the protective effect of endogenous E2.Conversely,ovariectomy(OVX)led to a significant increase in VAT weight and the VAT/SAT weight ratio,and this increase was also reversed with E2 treatment.Notably,OVX diminished the expression of genes involved in lipid metabolism compared to HFD feeding alone,signaling a widespread reduction in lipid metabolic activity,which was completely counteracted by E2 adminis-tration.This study provides a comprehensive insight into E2's local and direct protective effects against visceral adiposity in VAT at the gene level.CONCLUSION In conclusion,the present study demonstrated that the HFD-induced over-nutritional challenge disrupted the gene expression profile of visceral fat,leading to a universally decreased lipid metabolic status in E2 deficient mice.E2 treatment effectively reversed this condition,shedding light on the mechanistic role and therapeutic potential of E2 in combating visceral obesity.
基金financially supported by the earmarked fund for CARS36,the Natural Science Foundation of Heilongjiang Province(YQ2023C011)the National Key Research and Development Program of China(2023YFD2000701)the Key Research and Development Program of Heilongjiang Province(GZ20230028)。
文摘Background C16:0 and cis-9 C18:1 may have different effects on animal growth and health due to unique metabolism in vivo.This study was investigated to explore the different effects of altering the ratio of C16:0 and cis-9 C18:1 in fat supplements on growth performance,lipid metabolism,intestinal barrier,cecal microbiota,and inflammation in fattening bulls.Thirty finishing Angus bulls(626±69 kg,21±0.5 months)were divided into 3 treatments according to the randomized block design:(1)control diet without additional fat(CON),(2)CON+2.5%palmitic acid calcium salt(PA,90%C16:0),and(3)CON+2.5%mixed fatty acid calcium salt(MA,60%C16:0+30%cis-9 C18:1).The experiment lasted for 104 d,after which all the bulls were slaughtered and sampled for analysis.Results MA tended to reduce 0–52 d dry matter intake compared to PA(DMI,P=0.052).Compared with CON and MA,PA significantly increased 0–52 d average daily gain(ADG,P=0.027).PA tended to improve the 0–52 d feed conversion rate compared with CON(FCR,P=0.088).Both PA and MA had no significant effect on 52–104 days of DMI,ADG and FCR(P>0.05).PA tended to improve plasma triglycerides compared with MA(P=0.077),significantly increased plasma cholesterol(P=0.002)and tended to improve subcutaneous adipose weight(P=0.066)when compared with CON and MA.Both PA and MA increased visceral adipose weight compared with CON(P=0.021).Only PA increased the colonization of Rikenellaceae,Ruminococcus and Proteobacteria in the cecum,and MA increased Akkermansia abundance(P<0.05).Compared with CON,both PA and MA down-regulated the m RNA expression of Claudin-1 in the jejunum(P<0.001),increased plasma diamine oxidase(DAO,P<0.001)and lipopolysaccharide(LPS,P=0.045).Compared with CON and MA,PA down-regulated the ZO-1 in the jejunum(P<0.001)and increased plasma LPS-binding protein(LBP,P<0.001).Compared with CON,only PA down-regulated the Occludin in the jejunum(P=0.013).Compared with CON,PA and MA significantly up-regulated the expression of TLR-4 and NF-κB in the visceral adipose(P<0.001)and increased plasma IL-6(P<0.001).Compared with CON,only PA up-regulated the TNF-αin the visceral adipose(P=0.01).Compared with CON and MA,PA up-regulated IL-6 in the visceral adipose(P<0.001),increased plasma TNF-α(P<0.001),and reduced the Ig G content in plasma(P=0.035).Compared with CON,PA and MA increased C16:0 in subcutaneous fat and longissimus dorsi muscle(P<0.05),while more C16:0 was also deposited by extension and desaturation into C18:0 and cis-9 C18:1.However,neither PA nor MA affected the content of cis-9 C18:1 in longissimus dorsi muscle compared with CON(P>0.05).Conclusions MA containing 30%cis-9 C18:1 reduced the risk of high C16:0 dietary fat induced subcutaneous fat obesity,adipose tissue and systemic low-grade inflammation by accelerating fatty acid oxidative utilization,improving colonization of Akkermansia,reducing intestinal barrier damage,and down-regulating NF-κB activation.
基金study was supported by National Natural Science Foundation of China(31730091)the National Key Research and Development Program of China(2017YFD0500503).
文摘Background:Previous studies have shown that exogenous short-chain fatty acids(SCFAs)introduction attenuated the body fat deposition in conventional mice and pigs.However,limited studies have evaluated the effects of exogenously introduced SCFAs on the lipid and glucose metabolism independently of the gut microbiota.This study was to investigate the effects of exogenous introduction of SCFAs on the lipid and glucose metabolism in a germ-free(GF)pig model.Methods:Twelve hysterectomy-derived newborn pigs were reared in six sterile isolators.All pigs were hand-fed with sterile milk powder for 21 d,then the sterile feed was introduced to pigs for another 21 d.In the second 21-d period,six pigs were orally administrated with 25 mL/kg sterile saline per day and considered as the GF group,while the other six pigs were orally administrated with 25 mL/kg SCFAs mixture(acetic,propionic,and butyric acids,45,15,and 11 mmol/L,respectively)per day and regarded as FA group.Results:Orally administrated with SCFAs tended to increase the adiponectin concentration in serum,enhance the CPT-1 activity in longissimus dorsi,and upregulate the ANGPTL4 mRNA expression level in colon(P<0.10).Meanwhile,the mRNA abundances of ACC,FAS,and SREBP-1C in liver and CD36 in longissimus dorsi of the FA group were decreased(P<0.05)compared with those in the GF group.Besides,the mRNA expression of PGC-1αin liver and LPL in longissimus dorsi tended to(P<0.10)upregulate and downregulate respectively in the FA group.Moreover,oral administration of SCFAs tended to increase the protein level of GPR43(P<0.10)and decrease the protein level of ACC(P<0.10)in liver.Also,oral administration of SCFAs upregulated the p-AMPK/AMPK ratio and the mRNA expressions of GLUT-2 and GYS2 in liver(P<0.05).In addition,the metabolic pathway associated with the biosynthesis of unsaturated fatty acids was most significantly promoted(P<0.05)by oral administration of SCFAs.Conclusions:Exogenous introduction of SCFAs might attenuate the fat deposition and to some extent improve the glucose control in the pig model,which occurred independently of the gut microbiota.
文摘Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to moderate intensity aerobic exercise, fat plays an important role providing energy. Especially when the movement lasts for more than 3 ~ 4h, energy provided by fat can account for 70% to 90% of total energy metabolism. Many people use many means and methods in order to increase the proportion of fat oxidation providing for energy in the movement and save glucose consumption in vivo, improving the body' s endurance. On the other hand, endurance exercise can burn fat properly, and play an important role to reduce accumulation of body fat, prevent hyperlipidemia and improve lipid levels.
基金Supported by the National Natural Science Foundation of China,No. 82060836Jiangxi Province Graduate Student Innovation Special Fund Project,No. YC2021-B146Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program,No. CXTD22008
文摘BACKGROUND Studies have shown that a high-fat diet(HFD) can alter gut microbiota(GM)homeostasis and participate in lipid metabolism disorders associated with obesity.Therefore, regulating the construction of GM with the balance of lipid metabolism has become essential for treating obesity. Salvia miltiorrhiza extract(Sal), a common traditional Chinese medicine, has been proven effective against atherosclerosis, hyperlipidemia, obesity, and other dyslipidemia-related diseases.AIM To investigate the anti-obesity effects of Sal in rats with HFD-induced obesity, and explore the underlying mechanism by focusing on GM and lipid metabolism.METHODS Obesity was induced in rats with an HFD for 7 wk, and Sal(0.675 g/1.35 g/2.70g/kg/d) was administered to treat obese rats for 8 wk. The therapeutic effect was evaluated by body weight, body fat index, waistline, and serum lipid level. Lipid factors(cAMP, PKA, and HSL) in liver and fat homogenates were analyzed by ELISA. The effect of Sal on GM and lipid metabolism was assessed by 16S rRNAbased microbiota analysis and untargeted lipidomic analysis(LC-MS/MS),respectively.RESULTS Sal treatment markedly reduced weight, body fat index, serum triglycerides(TG), total cholesterol(TC), low-density lipoprotein, glucose, free fatty acid, hepatic lipid accumulation, and adipocyte vacuolation, and increased serum high-density lipoprotein(HDL-C) in rats with HFD-induced obesity. These effects were associated with increased concentrations of lipid factors such as c AMP, PKA, and HSL in the liver and adipose tissues, enhanced gut integrity, and improved lipid metabolism. GM analysis revealed that Sal could reverse HFD-induced dysbacteriosis by promoting the abundance of Actinobacteriota and Proteobacteria, and decreasing the growth of Firmicutes and Desulfobacterita. Furthermore, LC-MS/MS analysis indicated that Sal decreased TGs(TG18:2/18:2/20:4, TG16:0/18:2/22:6), DGs(DG14:0/22:6, DG22:6/22:6), CL(18:2/18:1/18:1/20:0), and increased ceramides(Cers;Cer d16:0/21:0, Cer d16:1/24:1),(O-acyl)-ω-hydroxy fatty acids(OAHFAs;OAHFA18:0/14:0) in the feces of rats. Spearman’s correlation analysis further indicated that TGs, DGs, and CL were negatively related to the abundance of Facklamia and Dubosiella, and positively correlated with Blautia and Quinella, while OAHFAs and Cers were the opposite.CONCLUSION Sal has an anti-obesity effect by regulating the GM and lipid metabolism.
基金the National Basic Research Program of China(2006CB504100)the National Natural Science Foundation of China (30393131, 30771043)
文摘Objective:To investigate the characteristics of fat metabolism in rat skeletal muscle after hypobaric hypoxia acclimation. Methods: Sprague-Dawley rats were divided into 3 groups randomly: control group (H0), hypoxic 5-day group (HS), and hypoxic 15-day group (H15). Animals of H5 and 15 groups were exposed to hypobaric hypoxia chamber simulating 5 000 m high altitude for 5 d or 15 d respectively, 23 h per day. H0 group stayed outside of chamber The level of fatty acid oxidation and uptake, and glucose oxidation were examined, and the level of non-esterified fatty acids (NEFA), ATP and phosphocreatine (PCr) were also assayed in rat skeletal muscles. Results: The contents of ATP and PCr in H5 group were lower than those in H0 and H15 groups (P〈0.05), while there was no significant difference between H0 and H15. Compared with H0, the blood NEFA level in all hypoxia groups was increased significantly (P〈0.05). The muscle NEFA level in H15 group was greatly higher than that in H0 and H5 groups. The rates of fatty acid oxidation and uptake in H15 group were significantly higher than those in H0 and H5 groups (P〈0.05), and the rate of glucose oxidation in all hypoxia groups was significantly decreased than that in H0 group (P〈0.05). Conclusion: It is concluded that the enhanced fat oxidation may be one of the mechanisms in the maintenance of energy homeostasis after hypobaric hypoxic acclimation.
基金financially supported by the earmarked fund for NSFC(31902196)Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2021-10)+2 种基金China Agriculture Research System(CARS-35)China Postdoctoral Science Foundation-funded project(2021 M693383,2019 M662273)Taishan industry leading talent blue talent project。
文摘Background:Enteromorpha prolifera(E.prolifera)polysaccharide has become a promising feed additive with a variety of physiological activities,such as anti-oxidant,anti-cancer,anti-diabetic,immunomodulatory,hypolipidemic,and cation chelating ability.However,whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown.This study was conducted to investigate the effects of E.prolifera polysaccharide(EP)-Zn supplementation on growth performance,amino acid,and fatty acid metabolism in chicken.Methods:A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates,12 chickens per replicate,and fed either the basal diet(control group)or basal diet plus E.prolifera polysaccharide-Zinc(400 mg EP-Zn/kg diet).Results:Dietary EP-Zn supplementation significantly increased(P<0.05)the body weight,average daily gain,muscle antioxidant activity,serum HDL level,and reduced serum TG and LDL concentration.In addition,dietary EPZn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum,ileum,breast muscle,and liver tissues(P<0.05).Compared with the control group,breast meat from chickens fed EP-Zn had higher(P<0.05)Pro and Asp content,and lower(P<0.05)Val,Phe,Gly,and Cys free amino acid content.Furthermore,EP-Zn supplementation upregulated(P<0.05)the mRNA expressions of mTOR and anti-oxidant related genes,while down-regulated protein degradation related genes in the breast muscle.Breast meat from EP-Zn supplemented group had significantly lower(P<0.05)proportions ofΣn-3 PUFA,and a higher percentage ofΣn-6 PUFA and the ratio of n-6/n-3 PUFA.Besides,EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue.Conclusions:It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility,enhances amino acid metabolism,and decreases oxidative stress-associated protein breakdown,thereby improving the growth performance.Furthermore,it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression.
文摘Nonalcoholic fatty liver disease (NAFLD), an pathologies characterized by fatty accumulation in escalating health problem worldwide, covers a spectrum of hepatocytes in early stages, with potential progression to liver inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an extracellular role in lipid transport between vital organs through circulation, but also play an important intracellu- lar role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metab- olism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, potential diagnosis, and treatment of NAFLD.
文摘This study aims to investigate the effects of EGCG on the lipid deposition and liver anti-oxidative capacity of broilers under heat stress.One hundred and ninety-two 2-week-old broilers were divided into four groups with 6 replicates per group and 8 chickens per replicate:one thermoneutral control group(28℃,TN group),which was fed the basal diet,and three cyclic high-temperature groups(35℃from 7:00 to 19:00 h;28℃from 19:00 h to 7:00 h,heat stress(HS)group),which were fed the basal diet added with EGCG at doses of 0(HS0 group),300(HS300 group),and 600 mg/kg(HS600 group),respectively.The liver metabolism and lipid deposition indices were performed at 35 d of age.The results showed that heat stress decreased the activities of superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px),and the Nrf2 mRNA expression in liver,and increase significantly the levels of malondialdehyde(MDA)and the expression of LITAF,NF-KB,FAS,SREBP1 mRNA and the lipid deposition compared with TN group.EGCG(HS300 and HS600 group)increased the activities of SOD and GSH-Px and catalase(CAT),increased the Nrf2 mRNA expression,decreased the MDA contents,and reduced the lipid deposition and expression of LITAF,NF-KB,FAS and SREBP1 mRNA.In conclusion,the results of this study show that EGCG can improve liver antioxidative capacity to alleviate oxidative damage caused by heat stress.
基金Supported by the National Natural Science Foundation of China (No. 31625025, 31572410, 31572412, 31272450, 31272451)the “111” Project (B16044)。
文摘Background: Excessive white fat accumulation in humans and other animals is associated with the development of multiple metabolic diseases. It is unknown whether dietary L-arginine supplementation reduces lipid deposition in high fat diet-fed Nile tilapia(Oreochromis niloticus).Results: In the present study, we found that dietary supplementation with 1% or 2% arginine decreased the deposition and concentration of fats in the liver;the concentrations of triglycerides, low-density lipoprotein, total cholesterol, and high-density lipoprotein in the serum;and the diameter of adipocytes in intraperitoneal adipose tissue. Compared with the un-supplementation control group, the hepatic activities of alanine aminotransferase,aspartate aminotransferase, and lactate dehydrogenase, and hepatic concentration of malondialdehyde were reduced but these for catalase and superoxide dismutase were enhanced by dietary supplementation with 2% arginine. Arginine supplementation reduced the total amounts of monounsaturated fatty acids, while increasing the total amounts of n-3 and n-6 polyunsaturated fatty acids in the liver. These effects of arginine were associated with reductions in mRNA levels for genes related to lipogenesis(sterol regulatory element-binding protein-1, acetyl-CoA carboxylase α, stearoyl-CoA desaturase, and fatty acid synthase) but increases in mRNA levels for genes involved in fatty acid β-oxidation(carnitine palmitoyltransferase 1α and peroxisome proliferator-activated receptor α). In addition, hepatic mRNA levels for Δ4 fatty acyl desaturase 2 and elongase 5 of very long-chain fatty acids were enhanced by arginine supplementation.Conclusion: These results revealed that dietary L-arginine supplementation to tilapia reduced high fat diet-induced fat deposition and fatty acid composition in the liver by regulating the expression of genes for lipid metabolism.
基金Supported by National Natural Science Foundation of China,No.30950005the Department of Education of Heilongjiang Province,No.12511233
文摘AIM: To assess the regulatory effect of microRNA-185 (miR-185) on lipid metabolism and the insulin signalling pathway in human HepG2 hepatocytes and a high-fat diet mouse model.
基金supported by the National Key R&D Program of China(2017YFD0401200)China Agriculture Research System(CARS-07-13.5-A17)+1 种基金General S&T project of Beijing Municipal Commission of Education(KM202010011006)BTBU Youth Fund(PXM2019_014213_000007).
文摘Foxtail millet(FM)whole grain has received special attention in recent years.To confirm the hypoglycemic effects of FM,we investigated the effects of FM supplementation on glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin(HFD/STZ)-induced diabetes.Specifically,we fully assessed the blood biochemical profiles,pancreatic histopathology,insulin-glucagon immunofluorescence,short-chain fatty acids,and gut microbiota composition of rats with HFD/STZ-induced diabetes before and after FM supplementation.Results showed that both 30% and 48% FM supplementation significantly decreased concentrations of fasting blood glucose,60-min blood glucose,and blood triglycerides(P<0.05);additionally,48% FM supplementation significantly improved blood glucose tolerance and insulin resistance(P<0.05).However,FM supplementation could not effectively repair damage to β-cells over a short period of time.In addition,4 weeks of 48% FM supplementation siginificantly increased the relative abundance of Bifidobacterium and concentration of butyrate,suggesting that the hypoglycemic effects of FM supplementation might be partially mediated by gut microbiota.Collectively,we found a dose-dependent relationship between FM supplementation and improvement of blood glucose metabolism,but did not find a synergistic effect between FM supplementation and metformin(Met)treatment.Our findings provide further support that consuming more whole-grain FM might be beneficial to individuals suffering from type 2 diabetes.
基金financially supported by the Australian Poultry Cooperative Research Centre
文摘Background: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements for growth and feed efficiency, however, significant variation remains for performance and growth traits. Production improvements have been coupled with unfavourable metabolic consequences, including immunological trade-offs for growth, and excess fat deposition. To determine whether interactions between fatty acid(FA) metabolism and innate immunity may be associated with performance variations commonly seen within commercial broiler flocks, total carcass lipid %, carcass and blood FA composition, as wel as genes involved with FA metabolism, immunity and cel ular stress were investigated in male birds of a broiler strain, layer strain and F1 layer × broiler cross at d 14 post hatch. Heterophil:lymphocyte ratios, relative organ weights and bodyweight data were also compared.Results: Broiler bodyweight(n = 12) was four times that of layers(n = 12) by d 14 and had significantly higher carcass fat percentage compared to the cross(n = 6; P = 0.002) and layers(P = 0.017) which were not significantly different from each other(P = 0.523). The carcass and whole blood FA analysis revealed differences in the FA composition between the three groups indicating altered FA metabolism, despite al being raised on the same diet. Genes associated with FA synthesis andβ-oxidation were upregulated in the broilers compared to the layers indicating a net overal increase in FA metabolism,which may be driven by the larger relative liver size as a percentage of bodyweight in the broilers. Genes involved in innate immunity such as TLR2 and TLR4, as wel as organel e stress indicators ERN1 and XBP1 were found to be nonsignificant, with the exception of high expression levels of XBP1 in layers compared to the cross and broilers. Additional y there was no difference in heterophil: lymphocytes between any of the birds.Conclusions: The results provide evidence that genetic selection may be associated with altered metabolic processes between broilers, layers and their F1 cross. Whilst there is no evidence of interactions between FA metabolism, innate immunity or cel ular stress, further investigations at later time points as growth and fat deposition increase would provide useful information as to the effects of divergent selection on key metabolic and immunological processes.