The notched and smooth specimens of aluminum alloy LC4CS soaked in EXCO solution for different time are tested under the constant amplitude cyclic loading to obtain S-N curves and fatigue notch factors with different ...The notched and smooth specimens of aluminum alloy LC4CS soaked in EXCO solution for different time are tested under the constant amplitude cyclic loading to obtain S-N curves and fatigue notch factors with different pre-corrosion time. By analyzing the corrosion process of LC4CS specimens in EXCO solution, the influ- ence mechanism of corrosion on fatigue notch factor is expounded. Then, a two-parameter model used to describe the change of corrosion fatigue notch factor with time is established and verified by experiment. The results show that the pre-corrosion fatigue notch factor of LC4CS material decreases at first and then increases with the increasing pre-corrosion time. The inflection point appears at the beginning of denudation stage.展开更多
The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic ...The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic strain amplitude and plastic strain rate on the dissolution current response was analysed. The experimental results showed that the transient current was dependent on the competitive process of the surface film rupture and repassivation of the new surface. The high plastic strain amplitude and the high plastic strain rate caused a change of electrochemical activity of specimen surface. In the condition of low strain amplitude and strain rate, the characteristics of current response was mainly relative tp the process of new surface repassivation.The competition kinetics has been analysed through the comparison of plastic strain rate and repassivating rate展开更多
The framework of fatigue factors is constructed to reduce the number of maritime accidents caused by human fatigue.Based on the study of maritime human fatigue,by screening and classifying it,there are 15 fatigue fact...The framework of fatigue factors is constructed to reduce the number of maritime accidents caused by human fatigue.Based on the study of maritime human fatigue,by screening and classifying it,there are 15 fatigue factors,which can be classified into 4 types:sleep,rest and rhythm;work factors;personal conditions;environmental factors.These factors are regarded as the variables for constructing scenarios.The importance,uncertainty,influence and dependence of variables and variable pairs were assessed by using morphological analysis,quantitative scales and correlation matrices.Ship movement and workload are selected as the two key variables,which are regarded as the axes of generating scenarios.One of the scenarios is selected as the typical scenario to illustrate the relationship between the causes of fatigue.Then,the analysis framework is constructed according to the fatigue factors relationship,and several potential solutions are proposed,which include the development of foresighted and flexible work plans,and the application of wearable facilities to improve monitoring and assessment systems.The proposed framework lays a theoretical foundation for studying maritime human fatigue,and scenario analysis can provide an effective strategy for reducing crews'fatigue.展开更多
The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To ch...The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To characterize the structural fatigue property,a finite element-based method is developed to compute the stress concentration factor,which is used to obtain the structural fatigue strength reduction factors.A full-scale fatigue test on the cast aluminum beam is designed and implemented for up to ten million cycles,and the corresponding finite element model of the beam is validated using the measured data of the gauges.The results show that the maximum stress concentration occurs at the fillet of the supporting seat,where the structural fatigue strength reduction factor is 2.45 and the calculated fatigue limit is 35.4 MPa.Moreover,no surface cracks are detected using the liquid penetrant test.Both the experimental and simulation results indicate that the cast aluminum beam can satisfy the service life requirements under the designed loading conditions.展开更多
In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stres...In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stress method,we calculated the fatigue notch factor and combined the material characteristics of TC6 to correct the material curve to the fan blades curve. Finally,the fatigue life of a fan blade was estimated using the linear cumulative damage rule and nonlinear cumulative damage theory.展开更多
The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperatu...The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.展开更多
The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guaran...The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process,the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time,mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore,the economic life model is put forward.The model is of sig-nificant scientific value for products to provide longer economic life,higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.展开更多
Endovascular repair of the thoracic aorta with self-expanding stent-grafts has been emerging as a less invasive alternative treatment compared with conventional open surgeries.Despite the promising efficacy and safety...Endovascular repair of the thoracic aorta with self-expanding stent-grafts has been emerging as a less invasive alternative treatment compared with conventional open surgeries.Despite the promising efficacy and safety of endovascular stent grafting,the stent-graft failure remains a major concern in terms of stent migration,device fatigue,and the risk of endoleaks.Challenges associated with the stent-grafts involve optimized geometrical structure,lifetime fatigue resistance,and adequate radial support.In this work,a novel endovascular stent-graft system is developed specially for the treatment of Stanford type B thoracic aortic dissections(TAD).Numerical study with finite element analysis(FEA)was utilized to evaluate the mechanical behaviors of the individual stent component.Results of the simulation were validated by experimental tests.Based on the systematic analysis of the parametric variations,a final stent-graft system was developed by the selection and arrangement of the individual stent components,targeting an optimal performance for treatment of TAD.The optimized solution of the stent-graft system was tested in clinical trials,showing advantageous therapeutic efficacy.展开更多
基金Supported by the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education(Irt0906)~~
文摘The notched and smooth specimens of aluminum alloy LC4CS soaked in EXCO solution for different time are tested under the constant amplitude cyclic loading to obtain S-N curves and fatigue notch factors with different pre-corrosion time. By analyzing the corrosion process of LC4CS specimens in EXCO solution, the influ- ence mechanism of corrosion on fatigue notch factor is expounded. Then, a two-parameter model used to describe the change of corrosion fatigue notch factor with time is established and verified by experiment. The results show that the pre-corrosion fatigue notch factor of LC4CS material decreases at first and then increases with the increasing pre-corrosion time. The inflection point appears at the beginning of denudation stage.
文摘The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic strain amplitude and plastic strain rate on the dissolution current response was analysed. The experimental results showed that the transient current was dependent on the competitive process of the surface film rupture and repassivation of the new surface. The high plastic strain amplitude and the high plastic strain rate caused a change of electrochemical activity of specimen surface. In the condition of low strain amplitude and strain rate, the characteristics of current response was mainly relative tp the process of new surface repassivation.The competition kinetics has been analysed through the comparison of plastic strain rate and repassivating rate
基金The National Natural Science Foundation of China(No.71573172,51709168).
文摘The framework of fatigue factors is constructed to reduce the number of maritime accidents caused by human fatigue.Based on the study of maritime human fatigue,by screening and classifying it,there are 15 fatigue factors,which can be classified into 4 types:sleep,rest and rhythm;work factors;personal conditions;environmental factors.These factors are regarded as the variables for constructing scenarios.The importance,uncertainty,influence and dependence of variables and variable pairs were assessed by using morphological analysis,quantitative scales and correlation matrices.Ship movement and workload are selected as the two key variables,which are regarded as the axes of generating scenarios.One of the scenarios is selected as the typical scenario to illustrate the relationship between the causes of fatigue.Then,the analysis framework is constructed according to the fatigue factors relationship,and several potential solutions are proposed,which include the development of foresighted and flexible work plans,and the application of wearable facilities to improve monitoring and assessment systems.The proposed framework lays a theoretical foundation for studying maritime human fatigue,and scenario analysis can provide an effective strategy for reducing crews'fatigue.
基金Supported by the National Natural Science Foundation of China(Grant No.51475036)the International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51711530034).
文摘The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To characterize the structural fatigue property,a finite element-based method is developed to compute the stress concentration factor,which is used to obtain the structural fatigue strength reduction factors.A full-scale fatigue test on the cast aluminum beam is designed and implemented for up to ten million cycles,and the corresponding finite element model of the beam is validated using the measured data of the gauges.The results show that the maximum stress concentration occurs at the fillet of the supporting seat,where the structural fatigue strength reduction factor is 2.45 and the calculated fatigue limit is 35.4 MPa.Moreover,no surface cracks are detected using the liquid penetrant test.Both the experimental and simulation results indicate that the cast aluminum beam can satisfy the service life requirements under the designed loading conditions.
文摘In this paper,stress states under corresponding condition of an aero-engine fan blade using finite element stress-strain analysis for three work cycles in the 900 h load spectrum are obtained.Through the nominal stress method,we calculated the fatigue notch factor and combined the material characteristics of TC6 to correct the material curve to the fan blades curve. Finally,the fatigue life of a fan blade was estimated using the linear cumulative damage rule and nonlinear cumulative damage theory.
基金The National Natural Science Foundation of China(No.51408043)the Natural Science Foundation of Shaanxi Province(No.2014JQ7278)
文摘The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.
基金National Natural Science Foundation of China (50135010)
文摘The theory of economic life prediction and reliability assessment of aircraft structures has a significant effect on safety of air-craft structures.It is based on the two-stage theory of fatigue process and can guarantee the safety and reliability of structures.According to the fatigue damage process,the fatigue scatter factors of crack initiation stage and crack propagation stage are given respectively.At the same time,mathematical models of fatigue life prediction are presented by utilizing the fatigue scatter factors and full scale test results of aircraft structures.Furthermore,the economic life model is put forward.The model is of sig-nificant scientific value for products to provide longer economic life,higher reliability and lower cost.The theory of economic life prediction and reliability assessment of aircraft structures has been successfully applied to determining and extending the structural life for thousands of airplanes.
基金jointly supported by the National Key R&D Program of China (No.2018YFC1106600)
文摘Endovascular repair of the thoracic aorta with self-expanding stent-grafts has been emerging as a less invasive alternative treatment compared with conventional open surgeries.Despite the promising efficacy and safety of endovascular stent grafting,the stent-graft failure remains a major concern in terms of stent migration,device fatigue,and the risk of endoleaks.Challenges associated with the stent-grafts involve optimized geometrical structure,lifetime fatigue resistance,and adequate radial support.In this work,a novel endovascular stent-graft system is developed specially for the treatment of Stanford type B thoracic aortic dissections(TAD).Numerical study with finite element analysis(FEA)was utilized to evaluate the mechanical behaviors of the individual stent component.Results of the simulation were validated by experimental tests.Based on the systematic analysis of the parametric variations,a final stent-graft system was developed by the selection and arrangement of the individual stent components,targeting an optimal performance for treatment of TAD.The optimized solution of the stent-graft system was tested in clinical trials,showing advantageous therapeutic efficacy.