This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves usin...This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.展开更多
The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing ...The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing process of composite laminates, are the common and major reason of causing the random distributions of the static strength and the fatigue life. And there is a correlative relation between the two distributions. With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material, the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained. And then the model which is used to describe the distributions of fatigue life of composites, based on their distributions of static strength, is set up. This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates. The experimental data of three kinds of composite laminates are employed to verify this model, and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.展开更多
In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this pap...In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.展开更多
In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore...In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.展开更多
Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-li...Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.展开更多
To quantitatively evaluate the effects of corrosion during grounding onfatigue life of aircraft structures, a new power equation is proposed using two-variable linearregression method. That the slope is a constant and...To quantitatively evaluate the effects of corrosion during grounding onfatigue life of aircraft structures, a new power equation is proposed using two-variable linearregression method. That the slope is a constant and the logarithmic intercept is a linear functionof pre-corrosion time makes this equation advantageous: it has a simple form, its parameters haveunambiguous technical and geometrical meanings, and it facilitates engineering applications.Three-parameter equations after pre-corrosion are obtained from back-calculation of fatigue limits,which have been successfully used to predict safe life of aircraft structures in corrosiveenvironment.展开更多
In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was ...In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.展开更多
To explore the influence of path deflection on crack propagation,a path planning algorithm is presented to calculate the crack growth length.The fatigue crack growth life of metal matrix composites(MMCs)is estimated b...To explore the influence of path deflection on crack propagation,a path planning algorithm is presented to calculate the crack growth length.The fatigue crack growth life of metal matrix composites(MMCs)is estimated based on an improved Paris formula.Considering the different expansion coefficient of different materials,the unequal shrinkage will lead to residual stress when the composite is molded and cooled.The crack growth model is improved by the modified stress ratio based on residual stress.The Dijkstra algorithm is introduced to avoid the cracks passing through the strengthening base and the characteristics of crack steps.This model can be extended to predict crack growth length for other similarly-structured composite materials.The shortest path of crack growth is simulated by using path planning algorithm,and the fatigue life of composites is calculated based on the shortest path and improved model.And the residual stress caused by temperature change is considered to improve the fatigue crack growth model in the material.The improved model can well predict the fatigue life curve of composites.By analyzing the fatigue life of composites,it is found that there is a certain regularity based on metal materials,and the new fatigue prediction model can also reflect this regularity.展开更多
Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbin...Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress.展开更多
As to the sonic fatigue problem of an aero-engine combustor liner structure under the random acoustic loadings,an effective method for predicting the fatigue life of a structure under random loadings was studied.First...As to the sonic fatigue problem of an aero-engine combustor liner structure under the random acoustic loadings,an effective method for predicting the fatigue life of a structure under random loadings was studied.Firstly,the probability distribution of Von Mises stress of thin-walled structure under random loadings was studied,analysis suggested that probability density function of Von Mises stress process accord approximately with two-parameter Weibull distribution.The formula for calculating Weibull parameters were given.Based on the Miner linear theory,the method for predicting the random sonic fatigue life based on the stress probability density was developed,and the model for fatigue life prediction was constructed.As an example,an aero-engine combustor liner structure was considered.The power spectrum density(PSD) of the vibrational stress response was calculated by using the coupled FEM/BEM(finite element method/boundary element method) model,the fatigue life was estimated by using the constructed model.And considering the influence of the wide frequency band,the calculated results were modified.Comparetive analysis shows that the estimated results of sonic fatigue of the combustor liner structure by using Weibull distribution of Von Mises stress are more conservative than using Dirlik distribution to some extend.The results show that the methods presented in this paper are practical for the random fatigue life analysis of the aeronautical thin-walled structures.展开更多
Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration ...Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.展开更多
The fatigue life for components can be predicted by the plot method which is easy and convenient in engineering. Based on the usual fatigue life prediction formula, a new formula for estimating the low stress and hig...The fatigue life for components can be predicted by the plot method which is easy and convenient in engineering. Based on the usual fatigue life prediction formula, a new formula for estimating the low stress and high cycle fatigue life is proposed and deduced, which has adopted more accurate SN curve relationship——WeibullSN curve formula. The solution of the new formula is given, too. In addition, an example has been calculated and proved in practice. The results of the new formula and the old one are given and compared.展开更多
The logarithmic moment estimations of parameters are proposed for two-parameter generalized Birnbaum-Saunders Logistic fatigue life distribution GBS-Logistic(α,β)under the full sample.The precisions of point estimat...The logarithmic moment estimations of parameters are proposed for two-parameter generalized Birnbaum-Saunders Logistic fatigue life distribution GBS-Logistic(α,β)under the full sample.The precisions of point estimations are investigated and compared with other point estimations by Monte-Carlo simulations.The approximate interval estimations of parameters are given by using Taylor expansion,and the precisions of approximate interval estimations are investigated by Monte-Carlo simulations.Finally,several examples show the feasibility of the methods.展开更多
The low-cycle fatigue (LCF) behavior of directionally solidified nickel-based superalloy Ti-6A1-4V was studied under bare and electron beam welding condi- tions at room temperature. Results show that: (1) under t...The low-cycle fatigue (LCF) behavior of directionally solidified nickel-based superalloy Ti-6A1-4V was studied under bare and electron beam welding condi- tions at room temperature. Results show that: (1) under the same test conditions, all the joints exhibit lower LCF lifetime than Ti-6A1-4V; (2) the failure of welded structures is mainly ascribed to the welding defect. A novel lifetime prediction methodology based on continuum damage mechanics is proposed to predict the lifetime of Ti-6A1-4V and its welded joints.展开更多
According to the traditional fatigue constant life curve, the concept and the universal expression of the generalized fatigue constant life curve were proposed. Then, on the basis of the optimization method of the cor...According to the traditional fatigue constant life curve, the concept and the universal expression of the generalized fatigue constant life curve were proposed. Then, on the basis of the optimization method of the correlation coefficient, the parameter estimation formulas were induced and the generalized fatigue constant life curve with the reliability level p was given. From P-S-a-S-m curve, the two-dimensional probability distribution of the fatigue limit was derived. After then, three se, of tests of LY11 CZ corresponding to the different average stress were carried out in terms of the two-dimensional up-down method. Finally, the methods are used to analyze the test results, and it is found that the analyzed results with the high precision may be obtained.展开更多
Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which ...Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which are suitable to stress concentration positionsabout its journal fillets and oil holes on a crankshaft, that it is undergone to bending, twistingand shearing loading and subjected to unsymmetric cyclic many-stage loading. Last the total lifein whole process is estimated by展开更多
Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasing...Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.展开更多
文摘This paper first describes the importance of using location specific S-N curves for fatigue damage assessment of existing steel structures. It discusses the existing concepts and methods for developing S-N curves using empirical formulae and monotonic strength parameters, such as the ultimate tensile strength and hardness. It also discusses relationships among these monotonic parameters. Then it presents formulae for developing hardness-based full range S-N curves for medium strength steels. The formulae are verified using experimental data obtained from both monotonic and cyclic testing. Finally, it describes the advantages of these hardness-based formulae for developing location specific S-N curves as hardness testing is a non-destructive test which can be carried out on specific locations in structures.
文摘The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing process of composite laminates, are the common and major reason of causing the random distributions of the static strength and the fatigue life. And there is a correlative relation between the two distributions. With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material, the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained. And then the model which is used to describe the distributions of fatigue life of composites, based on their distributions of static strength, is set up. This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates. The experimental data of three kinds of composite laminates are employed to verify this model, and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.
基金Supported by the NSF of China(69971016) Supported by the Shanghai Higher Learning Science Supported by the Technology Development Foundation(00JC14507)
文摘In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.
基金Supported by the NSF of China(69971016)Supported by the Shanghai Higher Learning Science and Technology Development Foundation(04DB24)
文摘In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.
基金Project was supported by the National Nature Science Foundation of China(51575408).
文摘Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.
文摘To quantitatively evaluate the effects of corrosion during grounding onfatigue life of aircraft structures, a new power equation is proposed using two-variable linearregression method. That the slope is a constant and the logarithmic intercept is a linear functionof pre-corrosion time makes this equation advantageous: it has a simple form, its parameters haveunambiguous technical and geometrical meanings, and it facilitates engineering applications.Three-parameter equations after pre-corrosion are obtained from back-calculation of fatigue limits,which have been successfully used to predict safe life of aircraft structures in corrosiveenvironment.
文摘In this study, fatigue tests under different R ratios were conducted on the AZ61 Mg alloy to investigate its fatigue lifetimes and fatigue crack growth (FCG) behavior. The fracture surface of the failed specimens was investigated using a scanning electron microscope to study the size of the intermetallic compounds from which the pioneer fatigue crack initiated and led to the final failure of the specimen. To determine the maximum size of the intermetallic compounds existing within the cross section of the specimen at higher risk, Gumbel’s extreme-value statistics were utilized. In the present study, the intermetallic compounds contained within the specimen were assumed to be the initial cracks existing in the material before the fatigue tests. A modified linear elastic fracture-mechanics parameter, M, proposed by McEvily et al., was used to analyze the short FCG behavior under different stress ratios, R. The relation between the rate of FCG and M parameter was found to be useful and appropriate for predicting the fatigue lifetimes under different R ratios. Moreover, the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios could be predicted with this method, which utilizes both the FCG law and a statistical distribution of sizes of the most dangerous intermetallic compounds. The evaluated results were in good agreement with the experimental ones. This correspondence indicates that the estimation method proposed in the present study is effective for evaluation of the probabilistic stress-fatigue life (P-S-N) curve of the material under different R ratios.
基金National Natural Science Foundation of China(Grant No.51675324)。
文摘To explore the influence of path deflection on crack propagation,a path planning algorithm is presented to calculate the crack growth length.The fatigue crack growth life of metal matrix composites(MMCs)is estimated based on an improved Paris formula.Considering the different expansion coefficient of different materials,the unequal shrinkage will lead to residual stress when the composite is molded and cooled.The crack growth model is improved by the modified stress ratio based on residual stress.The Dijkstra algorithm is introduced to avoid the cracks passing through the strengthening base and the characteristics of crack steps.This model can be extended to predict crack growth length for other similarly-structured composite materials.The shortest path of crack growth is simulated by using path planning algorithm,and the fatigue life of composites is calculated based on the shortest path and improved model.And the residual stress caused by temperature change is considered to improve the fatigue crack growth model in the material.The improved model can well predict the fatigue life curve of composites.By analyzing the fatigue life of composites,it is found that there is a certain regularity based on metal materials,and the new fatigue prediction model can also reflect this regularity.
基金This work was supported by National Natural Science Foundation of China (Grant Nos. 11602010 and 51505018).
文摘Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress.
基金Supported by the National Aviation Fundamental Science Foundation of China(No.02C54007)
文摘As to the sonic fatigue problem of an aero-engine combustor liner structure under the random acoustic loadings,an effective method for predicting the fatigue life of a structure under random loadings was studied.Firstly,the probability distribution of Von Mises stress of thin-walled structure under random loadings was studied,analysis suggested that probability density function of Von Mises stress process accord approximately with two-parameter Weibull distribution.The formula for calculating Weibull parameters were given.Based on the Miner linear theory,the method for predicting the random sonic fatigue life based on the stress probability density was developed,and the model for fatigue life prediction was constructed.As an example,an aero-engine combustor liner structure was considered.The power spectrum density(PSD) of the vibrational stress response was calculated by using the coupled FEM/BEM(finite element method/boundary element method) model,the fatigue life was estimated by using the constructed model.And considering the influence of the wide frequency band,the calculated results were modified.Comparetive analysis shows that the estimated results of sonic fatigue of the combustor liner structure by using Weibull distribution of Von Mises stress are more conservative than using Dirlik distribution to some extend.The results show that the methods presented in this paper are practical for the random fatigue life analysis of the aeronautical thin-walled structures.
基金supported by the Aviation Science Foundation of China(No.20150252003)
文摘Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.
文摘The fatigue life for components can be predicted by the plot method which is easy and convenient in engineering. Based on the usual fatigue life prediction formula, a new formula for estimating the low stress and high cycle fatigue life is proposed and deduced, which has adopted more accurate SN curve relationship——WeibullSN curve formula. The solution of the new formula is given, too. In addition, an example has been calculated and proved in practice. The results of the new formula and the old one are given and compared.
基金supported by the National Natural Science Foundation of China under Grant No.11671264
文摘The logarithmic moment estimations of parameters are proposed for two-parameter generalized Birnbaum-Saunders Logistic fatigue life distribution GBS-Logistic(α,β)under the full sample.The precisions of point estimations are investigated and compared with other point estimations by Monte-Carlo simulations.The approximate interval estimations of parameters are given by using Taylor expansion,and the precisions of approximate interval estimations are investigated by Monte-Carlo simulations.Finally,several examples show the feasibility of the methods.
基金financially supported by the Hi-Tech Research and Development Program of China(No.2012AA052102)the Innovation Foundation for Ph.D.Graduates of Beihang University(No.YWF-14-YJSY-016)the Program of International Science and Technology Cooperation of China(No.2013DFA61590)
文摘The low-cycle fatigue (LCF) behavior of directionally solidified nickel-based superalloy Ti-6A1-4V was studied under bare and electron beam welding condi- tions at room temperature. Results show that: (1) under the same test conditions, all the joints exhibit lower LCF lifetime than Ti-6A1-4V; (2) the failure of welded structures is mainly ascribed to the welding defect. A novel lifetime prediction methodology based on continuum damage mechanics is proposed to predict the lifetime of Ti-6A1-4V and its welded joints.
文摘According to the traditional fatigue constant life curve, the concept and the universal expression of the generalized fatigue constant life curve were proposed. Then, on the basis of the optimization method of the correlation coefficient, the parameter estimation formulas were induced and the generalized fatigue constant life curve with the reliability level p was given. From P-S-a-S-m curve, the two-dimensional probability distribution of the fatigue limit was derived. After then, three se, of tests of LY11 CZ corresponding to the different average stress were carried out in terms of the two-dimensional up-down method. Finally, the methods are used to analyze the test results, and it is found that the analyzed results with the high precision may be obtained.
文摘Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which are suitable to stress concentration positionsabout its journal fillets and oil holes on a crankshaft, that it is undergone to bending, twistingand shearing loading and subjected to unsymmetric cyclic many-stage loading. Last the total lifein whole process is estimated by
文摘Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.