Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and d...Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker's postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3.展开更多
A novel method is presented to evaluate the complicated fatigue behavior of gears made of20Cr2Ni4 A.Fatigue tests are conducted in a high-frequency push-pull fatigue tester,and acoustic emission(AE)technique is used...A novel method is presented to evaluate the complicated fatigue behavior of gears made of20Cr2Ni4 A.Fatigue tests are conducted in a high-frequency push-pull fatigue tester,and acoustic emission(AE)technique is used to acquire metal fatigue signals.After analyzing large number of AE frequency spectrum,we find that:the crack extension can be expressed as the energy of specific frequency band,which is abbreviated as F-energy.To further validate the fatigue behavior,some correlation analysis is applied between F-energy and some AE parameters.Experimental results show that there is significant correlation among the Fenergy,root mean square(RMS),relative energy,and hits.The findings can be used to validate the effectiveness of the F-energy in predicting fatigue crack propagation and remaining life for parts in-service.F-energy,as a new AE parameter,is first put forward in the area of fatigue crack growth.展开更多
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass...In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms.展开更多
文摘Based on the theory of continuum damage mechanics,a bi-variable damage mechanics model is developed,which,according to thermodynamics,is accessible to derivation of damage driving force,damage evolution equation and damage evolution criteria. Furthermore,damage evolution equations of time rate are established by the generalized Drucker's postulate. The damage evolution equation of cycle rate is obtained by integrating the time damage evolution equations,and the fatigue life prediction method for smooth specimens under repeated loading with constant strain amplitude is constructed. Likewise,for notched specimens under the repeated loading with constant strain amplitude,the fatigue life prediction method is obtained on the ground of the theory of conservative integral in damage mechanics. Thus,the material parameters in the damage evolution equation can be obtained by reference to the fatigue test results of standard specimens with stress concentration factor equal to 1,2 and 3.
基金Supported by the National Natural Science Foundation of China(50975030)
文摘A novel method is presented to evaluate the complicated fatigue behavior of gears made of20Cr2Ni4 A.Fatigue tests are conducted in a high-frequency push-pull fatigue tester,and acoustic emission(AE)technique is used to acquire metal fatigue signals.After analyzing large number of AE frequency spectrum,we find that:the crack extension can be expressed as the energy of specific frequency band,which is abbreviated as F-energy.To further validate the fatigue behavior,some correlation analysis is applied between F-energy and some AE parameters.Experimental results show that there is significant correlation among the Fenergy,root mean square(RMS),relative energy,and hits.The findings can be used to validate the effectiveness of the F-energy in predicting fatigue crack propagation and remaining life for parts in-service.F-energy,as a new AE parameter,is first put forward in the area of fatigue crack growth.
基金the supports from the Jiangsu Province Key Laboratory of Aerospace Power System of China(No.NJ20140019)the National Natural Science Foundation of China(No.51205190)
文摘In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms.