期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fatigue life prediction model of 2.5D woven composites at various temperatures 被引量:4
1
作者 Jian SONG Weidong WEN Haitao CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期310-329,共20页
As one of the new structural layout in the family of woven composites, 2.5D Woven Composites(2.5D-WC) have recently attracted an increasing interest owing to its excellent properties, i.e. high specific strength and... As one of the new structural layout in the family of woven composites, 2.5D Woven Composites(2.5D-WC) have recently attracted an increasing interest owing to its excellent properties, i.e. high specific strength and fatigue resistance, in the aerospace and automobile industry. Indepth understanding of the fatigue behavior of this material at un-ambient temperatures is critical for the engineering applications, especially in aero-engine field. Here, fatigue behavior of 2.5D-WC at different temperatures was numerically investigated based on the unit cell approach. Firstly, the unit cell model of 2.5D-WC was established using ANSYS software. Subsequently, the temperature-dependent fatigue life prediction model was built up. Finally, the fatigue lives alongside the damage evolution processes of 2.5D-WC at ambient temperature(20 ℃) and unambient temperature(180 ℃) were analyzed. The results show that numerical results are in good agreement with the relevant experimental results at 20 and 180 ℃. Fatigue behavior of 2.5D-WC is also sensitive to temperature, which is partially attributed to the mechanical properties of resin and the change of inclination angle of warp yarns. We hope that the proposed fatigue life prediction model and the findings could further promote the engineering application of 2.5D-WC, especially in aero-engine field. 展开更多
关键词 ANSYS fatigue behavior fatigue life prediction model TEMPERATURE 2.5D woven composites
原文传递
Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures 被引量:2
2
作者 Ye Jin Kim Young Min Kim +2 位作者 Jun Ho Bae Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期892-902,共11页
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve... The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude. 展开更多
关键词 AZ91-Ca-Y Extrusion temperature MICROSTRUCTURE Low-cycle fatigue fatigue life prediction model
下载PDF
Short-range ordering plays a determining role in the low-cycle fatigue life improvement of fcc metals: A conclusive study on low solid-solution hardening Ni-Cr alloys
3
作者 Y.J.Zhang D.Han X.W.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期157-171,共15页
The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at consta... The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance. 展开更多
关键词 Ni-Cr alloy Short range ordering Low solid-solution hardening Low-cycle fatigue Slip mode fatigue life prediction model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部