期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation 被引量:4
1
作者 Rui JIAO Xiaofan HE Yuhai LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期727-739,共13页
Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve t... Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner's rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7 B04-T74 aluminum alloy and TA15 M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. 展开更多
关键词 fatigue damage fatigue monitoring fatigue test Scatter factor S-N curve
原文传递
The pitch-catch nonlinear ultrasonic imaging techniques for structural health monitoring 被引量:1
2
作者 CHENG JingWei DRINKWATER Bruce W. +3 位作者 CHEN XueDong FAN ZhiChao CHEN Wei WANG Zhe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第12期2608-2617,共10页
Nonlinear ultrasonic imaging techniques in pulse-echo configuration have recently shown their potential to allow the effective separation of nonlinear and linear features in a nonlinear image.In this study,two ultraso... Nonlinear ultrasonic imaging techniques in pulse-echo configuration have recently shown their potential to allow the effective separation of nonlinear and linear features in a nonlinear image.In this study,two ultrasonic phased arrays are implemented to produce an image of elastic nonlinearity through the parallel-sequential subtraction of the coherently scattered components in the through-transmission acoustic field at the transmission or subharmonic frequency.In parallel mode,a physical focus at each pixel is achieved by firing the transmitters with a predefined delay law.In sequential mode,each transmitter is fired in sequence and all the receivers are employed to capture the data simultaneously.This full matrix captured data can be post-processed and focused synthetically at the target area.The images of parallel focusing and sequential focusing are expected to be linearly identical and hence any differences remained on the subtracted image can be related to the nonlinearities arising from the defects.Therefore,the imaging metric here is defined as the difference between parallel and sequentially focused amplitudes obtained from forward coherently scattered fields at each target point.Additionally,the negative influences due to the instrumentation nonlinearities are investigated by studying the remaining relative phase and amplitude at undamaged pixels.A compensation method is implemented to suppress these noises,significantly enhancing the selectivity of nonlinear scattering features.The proposed techniques are then implemented to monitor fatigue crack growth in order to explore the capability of these methods as measures of elastic nonlinearity induced by different sizes of small closed cracks.The promising results suggest that nonlinear imaging can be used to monitor crack growth and improve the detectability at early stages. 展开更多
关键词 pitch-catch coherent measurement nonlinear imaging fatigue crack monitoring ultrasonic phased array nonlinearities decoupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部