A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that fo...A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that for variable loading the increment of failure probability pro-duced by each load cycle is determined by the stress level as well as the damage state at whichthis load cycle applies Contrast to 'conditional reliability-equivalent life methodology'. this meth-od calculates the equivalent cycle numbers between different stress levels according to cumulativefatigue damage rule but not equivalent failure probability.展开更多
First, Wirsching's model, which is widely employed in fatigue reliability anlysis of marine and offshore structures, is analysed systematically. It is found that the very important random variable A in Wirsching...First, Wirsching's model, which is widely employed in fatigue reliability anlysis of marine and offshore structures, is analysed systematically. It is found that the very important random variable A in Wirsching's model can not be directly determined from fatigue experiment because of the irreversibility of fatigue test, and in fact, what Wirsching studied from testing results is not A but a of the statistical Miner's rule. Second, by use of the statistical Miner's rule, a modified Wirsching's model is proposed. Thirdly and more importantly, based on the two-dimensional probabilistic Miner's rule, a new model is established for fatigue reliability analysis of structural components subjected to specified cyclic loading of variable amplitude or stochastic time history. In the end, an example is presented, from which it will be seen that this new model is very convenient to use and feasible to engineering practice.展开更多
Firstly, constant amplitude P-S_a-S_m-N_c surface family is established.Secondly, four basic assumptions, i.e., monotonically increasing, non-coupling, separability andnonintersecting of fatigue damage accumulation ar...Firstly, constant amplitude P-S_a-S_m-N_c surface family is established.Secondly, four basic assumptions, i.e., monotonically increasing, non-coupling, separability andnonintersecting of fatigue damage accumulation are proposed from the viewpoint of both damagemechanics and fracture mechanics. Then the individual isodamage D-S_a-S_m-N surface under constantamplitude loading is constructed and the two-dimensional individual Miner's rule is derived.Consequently, the two-dimensional probabilistic Miner's rule (TPMiner) is established and proved fora population subjected to variable amplitude loading. Finally, with successfully experimentverification, TPMiner proves be to very useful and feasible in fatigue reliability theory.展开更多
In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged ...In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged tension leg platform(STLP)wind turbine,a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out.The signal filter method is used to evaluate the mean and standard deviations of the structural response.Furthermore,the extreme responses are estimated by using the mean upcrossing rate method.The fatigue damages for blade root,tower,and mooring line are also studied according to the simulated time-series.The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area.Additionally,in severe sea states,the STLP gives lower extreme values of platform pitch,slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP.It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.展开更多
A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-p...A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-phase are utilized. The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed. By introducing a parameter a which is a function of the phase lag angle between the axial and the torsional loading, a new multiaxial nonlinear fatigue damage cumulative model is proposed. The proposed model is evaluated by the experimental aluminium alloy, and multi-level loading of 45 steel. Fatigue lives data for two-level loading, multi-level loading of LY12CZ predicted are within a factor of 2 scatter band.展开更多
文摘A method is presented for estimating fatigue reliability under variable loading, which isbased on load cycles-fatigue life interference theory as well as cumulative fatigue damageanalysis. The basic opinion is that for variable loading the increment of failure probability pro-duced by each load cycle is determined by the stress level as well as the damage state at whichthis load cycle applies Contrast to 'conditional reliability-equivalent life methodology'. this meth-od calculates the equivalent cycle numbers between different stress levels according to cumulativefatigue damage rule but not equivalent failure probability.
基金This project was financially supported by the National Science Foundation of China(59605010)and the Postdoctoral Science Foundation of China
文摘First, Wirsching's model, which is widely employed in fatigue reliability anlysis of marine and offshore structures, is analysed systematically. It is found that the very important random variable A in Wirsching's model can not be directly determined from fatigue experiment because of the irreversibility of fatigue test, and in fact, what Wirsching studied from testing results is not A but a of the statistical Miner's rule. Second, by use of the statistical Miner's rule, a modified Wirsching's model is proposed. Thirdly and more importantly, based on the two-dimensional probabilistic Miner's rule, a new model is established for fatigue reliability analysis of structural components subjected to specified cyclic loading of variable amplitude or stochastic time history. In the end, an example is presented, from which it will be seen that this new model is very convenient to use and feasible to engineering practice.
基金This project is supported by National Natural Science Foundation of China(No.59605010,No.59979015)Selected from Proceedings of 2000 the First International Conference on Mechanical Engineering
文摘Firstly, constant amplitude P-S_a-S_m-N_c surface family is established.Secondly, four basic assumptions, i.e., monotonically increasing, non-coupling, separability andnonintersecting of fatigue damage accumulation are proposed from the viewpoint of both damagemechanics and fracture mechanics. Then the individual isodamage D-S_a-S_m-N surface under constantamplitude loading is constructed and the two-dimensional individual Miner's rule is derived.Consequently, the two-dimensional probabilistic Miner's rule (TPMiner) is established and proved fora population subjected to variable amplitude loading. Finally, with successfully experimentverification, TPMiner proves be to very useful and feasible in fatigue reliability theory.
基金the National Natural Science Foundation of China(Grant No.51809135)the National Natural Science Foundation of China-Shandong Joint Fund(Grant No.U1806227)the Natural Science Foundation of Shandong Province(Grant No.ZR2018BEE047).
文摘In connection with the design of floating wind turbines,stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces.To study the random structural responses of a newly designed submerged tension leg platform(STLP)wind turbine,a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out.The signal filter method is used to evaluate the mean and standard deviations of the structural response.Furthermore,the extreme responses are estimated by using the mean upcrossing rate method.The fatigue damages for blade root,tower,and mooring line are also studied according to the simulated time-series.The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area.Additionally,in severe sea states,the STLP gives lower extreme values of platform pitch,slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP.It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.
基金supported by the National Natural Science Foundation of China(Grant No.10702027)Aviation Science Funds of China(Grant No.2011ZA52016)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.Irt0906)
文摘A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-phase are utilized. The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed. By introducing a parameter a which is a function of the phase lag angle between the axial and the torsional loading, a new multiaxial nonlinear fatigue damage cumulative model is proposed. The proposed model is evaluated by the experimental aluminium alloy, and multi-level loading of 45 steel. Fatigue lives data for two-level loading, multi-level loading of LY12CZ predicted are within a factor of 2 scatter band.