期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Molecular Cloning and Characterization of a Novel Gene Involved in Fatty Acid Synthesis in Brassica napus L. 被引量:1
1
作者 XIAO Gang ZHANG Zhen-qian +4 位作者 LIU Rui-yang YIN Chang-fa WU Xian-meng TAN Tai-long GUAN Chun-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第6期962-970,共9页
Based on the sequence of a novel expressed sequence tag (EST), the full-length cDNA of 1 017 nucleotides was cloned from Brassica napus cv. Xiangyou 15 through rapid amplification of cDNA ends (RACE). The gene was... Based on the sequence of a novel expressed sequence tag (EST), the full-length cDNA of 1 017 nucleotides was cloned from Brassica napus cv. Xiangyou 15 through rapid amplification of cDNA ends (RACE). The gene was designated as Bnhol34 (HQ585980), encoding a protein of 338 amino acids. BLAST analysis showed no high degree of sequence identity to any known gene. The calculated molecular weight of the Bnhol34 protein was 36.23 kDa, and the theoretical isoelectric point was 8.74. The Bnhol34 was also cloned from a high oleic acid mutant 854-1 through homologous cloning. There was no difference between the two Bnhol34 genes. Bnhol34 was localized in a tissue-specific manner in B. napus, and its expression level was about eight-fold greater in Xiangyou 15 seeds than in 854-1. The promoter region sequences of Bnhol34 were then isolated from Xiangyou 15 and 854-1, and a 93-bp deletion was found to occur in the Bnhol34 promoter region of 854-1. Three abscisic acid-responsive cis-elements (ABRE) were identified in the promoter region of Xiangyou 15. Real-time PCR analyses revealed that exogenous abscisic acid increased Bnhol34 expression by about four-fold in Xiangyou 15 seeds, yet did not change Bnhol34 expression in 854-1. It appeared that Bnhol34 might be abscisic acid insensitive in 854-1. 展开更多
关键词 Brassca napus L. rapid amplification of cDNA ends high-efficient thermal asymmetric interlaced PCR fatty acid synthesis abscisic acid EXPRESSION
下载PDF
Roles of vitamin A in the regulation of fatty acid synthesis
2
作者 Fu-Chen Yang Feng Xu +1 位作者 Tian-Nan Wang Guo-Xun Chen 《World Journal of Clinical Cases》 SCIE 2021年第18期4506-4519,共14页
Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factor... Dietary macronutrients and micronutrients play important roles in human health.On the other hand,the excessive energy derived from food is stored in the form of triacylglycerol.A variety of dietary and hormonal factors affect this process through the regulation of the activities and expression levels of those key player enzymes involved in fatty acid biosynthesis such as acetyl-CoA carboxylase,fatty acid synthase,fatty acid elongases,and desaturases.As a micronutrient,vitamin A is essential for the health of humans.Recently,vitamin A has been shown to play a role in the regulation of glucose and lipid metabolism.This review summarizes recent research progresses about the roles of vitamin A in fatty acid synthesis.It focuses on the effects of vitamin A on the activities and expression levels of mRNA and proteins of key enzymes for fatty acid synthesis in vitro and in vivo.It appears that vitamin A status and its signaling pathway regulate the expression levels of enzymes involved in fatty acid synthesis.Future research directions are also discussed. 展开更多
关键词 Vitamin A Acetyl-CoA carboxylase fatty acid synthase fatty acid elongase Stearoyl-CoA desaturase fatty acid synthesis
下载PDF
Androgen signaling inhibits de novo lipogenesis to alleviate lipid deposition in zebrafish
3
作者 Jing-Yi Jia Guang-Hui Chen +6 位作者 Ting-Ting Shu Qi-Yong Lou Xia Jin Jiang-Yan He Wu-Han Xiao Gang Zhai Zhan Yin 《Zoological Research》 SCIE CSCD 2024年第2期355-366,共12页
Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males.However,the mechanisms by which testosterone acts on lipid metabolism are not yet fully unders... Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males.However,the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood,especially in teleosts.In this study,cyp17a1-/-zebrafish(Danio rerio)exhibited excessive visceral adipose tissue(VAT),lipid content,and up-regulated expression and activity of hepatic de novo lipogenesis(DNL)enzymes.The assay for transposase accessible chromatinwithsequencing(ATAC-seq)results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/-fish compared to cyp17a1+/+male fish,including stearoyl-CoA desaturase(scd)and fatty acid synthase(fasn).Androgen response element(ARE)motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+male fish but not in cyp17a1-/-fish.Both androgen receptor(ar)-/-and wildtype(WT)zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue,lipid content,and up-regulated expression and activity of hepatic de novo lipogenesis enzymes.The Ar agonist BMS-564929 reduced the content of VAT and lipid content,and down-regulated acetyl-CoA carboxylase a(acaca),fasn,and scd expression.Mechanistically,the rescue effect of testosterone on cyp17a1-/-fish in terms of phenotypes was abolished when ar was additionally depleted.Collectively,these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish,thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts. 展开更多
关键词 Cyp17a1 TESTOSTERONE Androgen receptor De novo lipogenesis fatty acid synthesis
下载PDF
Total Replacement of Fish Oil with Vegetable Oils in the Diet of Juvenile Jade Perch Scortum barcoo Reared in Recirculating Aquaculture Systems 被引量:12
4
作者 Stijn Van Hoestenberghe Ivo Roelants +1 位作者 Daniel Vermeulen Bruno Maria Goddeeris 《Journal of Agricultural Science and Technology(B)》 2013年第5期385-398,共14页
To determine the replacement of fish oil with vegetable oils in the diet of juvenile Jade perch Scortum barcoo, four feeds with each a different oil (fish, sunflower, linseed and a mixture of 75% canola and 25% linse... To determine the replacement of fish oil with vegetable oils in the diet of juvenile Jade perch Scortum barcoo, four feeds with each a different oil (fish, sunflower, linseed and a mixture of 75% canola and 25% linseed oil), were fed to Jade perch reared in recirculating aquaculture systems (RAS). The trial lasted for 10 weeks and the fatty acid (FA) profile of both feed and fish muscle tissue were examined. There was no difference in growth, feed conversion rate (FCR) and mortality. The fish grew from 10 g to 110 g with a FCR of 1.25 and 0 mortality. The FA profile of the fish muscle tissue reflected the FA profile of the feed. The flesh of the fish that were fed the linseed oil diet, were extremely high in omega-3 (n-3) polyunsaturated FA (n-3 PUFA) with 3.75% of wet weight. This is one of the highest concentrations of n-3 PUFA ever recorded in fish flesh. In a finishing feeding test, the remaining vegetable oil fed fish were fed the fish oil diet for another two weeks immediately after the 10 weeks trial, to check for a possible recovery of n-3 highly unsaturated fatty acids (HUFA). The wash out rate of FA towards n-3 HUFA in the muscle tissue was about 25% over this two weeks period. 展开更多
关键词 Recirculating aquaculture system fish oil replacement fatty acid synthesis feed conversion ratio omega 3 fatty acids long chain fatty acid recovery.
下载PDF
Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF 被引量:1
5
作者 ZHONG Dan-dan YANG Bao-xue 《中国药理学与毒理学杂志》 CAS 北大核心 2019年第9期703-704,共2页
OBJECTIVE Ganoderma lucidum polysaccharide peptide(GLPP)is a group of extract from Ganoderma lucidum with a molecular mass of approximately 5×10^5,which ratio of polysaccharide to peptide is approximately 95%/5%.... OBJECTIVE Ganoderma lucidum polysaccharide peptide(GLPP)is a group of extract from Ganoderma lucidum with a molecular mass of approximately 5×10^5,which ratio of polysaccharide to peptide is approximately 95%/5%.The purpose of this study was to determine whether GLPP has therapeutic effect on Non-alcoholic fatty liver disease(NAFLD).METHODS Ob/ob mouse model and ApoC3 transgenic mouse model were used for exploring the effect of GLPP on NAFLD.Key metabolic pathways and enzymes were identified by metabolomics combining with KEGG and PIUmet analyses and key enzymes were detected by Western blotting.Hepatosteatosis models of HepG2 cells and primary hepatocytes were used to further confirm the therapeutic effect of GLPP on NAFLD.RESULTS GLPP administrated for a month alleviated hepatosteatosis,dyslipidemia,liver dysfunction and liver insulin resistance.Pathways of glycerophos⁃pholipid metabolism,fatty acid metabolism and primary bile acid biosynthesis were involved in the therapeutic effect of GLPP on NAFLD.Detection of key enzymes revealed that GLPP reversed low expression of CYP7A1,CYP8B1,FXR,SHP and high expression of FGFR4 in ob/ob mice and ApoC3 mice.Besides,GLPP inhibited fatty acid synthesis by reducing the expression of SREBP1c,FAS and ACC via a FXR-SHP dependent mechanism.Additionally,GLPP reduced the accumulation of lipid droplets and the content of TG in HepG2 cells and primary hepatocytes induced by oleic acid and palmitic acid.CONCLUSION GLPP significantly improves NAFLD via regulating bile acid synthesis dependent on FXR-SHP/FGF pathway,which finally inhibits fatty acid synthesis,indicating that GLPP might be developed as a ther⁃apeutic drug for NAFLD. 展开更多
关键词 Ganoderma lucidum polysaccharide peptide NAFLD insulin resistance HEPATOSTEATOSIS metabolo⁃mics bile acid synthesis nuclear receptors fatty acid synthesis
下载PDF
When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance 被引量:11
6
作者 Ching-Ying Kuo David K.Ann 《Cancer Communications》 SCIE 2018年第1期499-510,共12页
The role of fatty acid metabolism,including both anabolic and catabolic reactions in cancer has gained increas-ing attention in recent years.Many studies have shown that aberrant expression of the genes involved in fa... The role of fatty acid metabolism,including both anabolic and catabolic reactions in cancer has gained increas-ing attention in recent years.Many studies have shown that aberrant expression of the genes involved in fatty acid synthesis or fatty acid oxidation correlate with malignant phenotypes including metastasis,therapeutic resistance and relapse.Such phenotypes are also strongly associated with the presence of a small percentage of unique cells among the total tumor cell population.This distinct group of cells may have the ability to self-renew and propagate or may be able to develop resistance to cancer therapies independent of genetic alterations.Therefore,these cells are referred to as cancer stem cells/tumor-initiating cells/drug-tolerant persisters,which are often refractory to cancer treatment and difficult to target.Moreover,interconversion between cancer cells and cancer stem cells/tumor-initiating cells/drug-tolerant persisters may occur and makes treatment even more challenging.This review highlights recent findings on the relationship between fatty acid metabolism,cancer stemness and therapeutic resistance and prompts discussion about the potential mechanisms by which fatty acid metabolism regulates the fate of cancer cells and therapeutic resistance. 展开更多
关键词 fatty acid synthesis fatty acid oxidation fatty acid metabolism Lipogenic phenotype Cancer stem cells Tumor-initiating cells Cancer cell plasticity Therapeutic resistance Drug-tolerant persisters
原文传递
PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism 被引量:5
7
作者 Weixing Dai Wenqiang Xiang +9 位作者 Lingyu Han Zixu Yuan Renjie Wang Yanlei Ma Yongzhi Yang Sanjun Cai Ye Xu Shaobo Mo Qingguo Li Guoxiang Cai 《Cancer Communications》 SCIE 2022年第9期848-867,共20页
Background:Abnormal expression of protein tyrosine phosphatases(PTPs)has been reported to be a crucial cause of cancer.As a member of PTPs,protein tyrosine phosphatase receptor type O(PTPRO)has been revealed to play t... Background:Abnormal expression of protein tyrosine phosphatases(PTPs)has been reported to be a crucial cause of cancer.As a member of PTPs,protein tyrosine phosphatase receptor type O(PTPRO)has been revealed to play tumor suppressive roles in several cancers,while its roles in colorectal cancer(CRC)remains to be elucidated.Hence,we aimed to explore the roles and mechanisms of PTPRO in CRC initiation and progression.Methods:The influences of PTPRO on the growth and liver metastasis of CRC cells and the expression patterns of different lipid metabolism enzymes were evaluated in vitro and in vivo.Molecular and biological experiments were conducted to uncover the underpinning mechanisms of dysregulated de novo lipogenesis and fatty acidβ-oxidation.Results:PTPRO expression was notably downregulated in CRC liver metastasis compared to the primary cancer,and such a downregulation was associated with poor prognosis of patients with CRC.PTPRO silencing significantly promoted cell growth and liver metastasis.Compared with PTPRO wild-type mice,PTPROknockout mice developed more tumors and harbored larger tumor loads under treatment with azoxymethane and dextran sulfate sodium.Gene set enrichment analysis revealed that PTPRO downregulation was significantly associated with the fatty acid metabolism pathways.Blockage of fatty acid synthesis abrogated the effects of PTPRO silencing on cell growth and liver metastasis.Further experiments indicated that PTPRO silencing induced the activation of the AKT serine/threonine kinase(AKT)/mammalian target of rapamycin(mTOR)signaling axis,thus promoting de novo lipogenesis by enhancing the expression of sterol regulatory element-binding protein 1(SREBP1)and its target lipogenic enzyme acetyl-CoA carboxylase alpha(ACC1)by activating the AKT/mTOR signaling pathway.Furthermore,PTPRO attenuation decreased the fatty acid oxidation rate by repressing the expression of peroxisome proliferator-activated receptor alpha(PPARα)and its downstream enzyme peroxisomal acyl-coenzyme A oxidase 1(ACOX1)via activating the p38/extracellular signal-regulated kinase(ERK)mitogen-activated protein kinase(MAPK)signaling pathway.Conclusions:PTPRO could suppress CRC development and metastasis via modulating the AKT/mTOR/SREBP1/ACC1 and MAPK/PPARα/ACOX1 pathways and reprogramming lipid metabolism. 展开更多
关键词 AKT colorectal cancer fatty acid oxidation fatty acid synthesis lipid metabolism liver metastasis MTOR PTPRO TUMORIGENESIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部