期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Machine learning based online fault prognostics for nonstationary industrial process via degradation feature extraction and temporal smoothness analysis 被引量:2
1
作者 HU Yun-yun ZHAO Chun-hui KE Zhi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3838-3855,共18页
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen... Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process. 展开更多
关键词 fault prognostic NONSTATIONARY industrial process fault degradation-oriented slow feature analysis(FDSFA) temporal smoothness regularization
下载PDF
Overview of the Importance of Intelligent Approaches on Machinery Faults Diagnosis and Prediction Based on Prognostic and Health Management/Condition-Based Maintenance 被引量:1
2
作者 OMIDI Ali LIU Shujie 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期270-273,共4页
Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accide... Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM. 展开更多
关键词 condition-based maintenance(CBM) prognostic and health management(PHM) machinery fault diagnosis data mining data processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部