Epidemic hemorrhagic fever has been an ongoing threat to laboratory personnel involved in animal care and use. Laboratory transmissions and severe infections occurred over the past twenty years, even though the standa...Epidemic hemorrhagic fever has been an ongoing threat to laboratory personnel involved in animal care and use. Laboratory transmissions and severe infections occurred over the past twenty years, even though the standards and regulations for laboratory biosafety have been issued, upgraded, and implemented in China. Therefore, there is an urgent need to identify risk factors and to seek effective preventive measures that can curb the incidences of epidemic hemorrhagic fever among laboratory personnel. In the present study, we reviewed literature that relevant to animals laboratory-acquired hemorrhagic fever infections reported from 1995 to 2015, and analyzed these incidences using fault tree analysis (FTA).展开更多
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory w...In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory was employed and combined with conventional FTA method. The basic events failure probabilities were described by interval numbers,and the interval operators of logical gates in FTA were deduced based on interval theory. Finally,the reliability assessment of excavator variable-frequency speed control system was done by interval FTA method. The result shows that the interval FTA method is suitable for the complex system with insufficient failure data.展开更多
CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of C...CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of CNC machine,the reliability of spindle was evaluated in this paper using a fault tree analysis(FTA)method.The FTA method is a set of calculation methods based on Boolean algebra.However,it is difficult to analyze a large and complex fault tree with inaccurate results and low efficiency as well as the complexity of time and space.Both of them will result in the so-called "combinatorial explosion".To overcome this problem,the analysis method based on binary decision diagram(BDD)was introduced in our works,and a sorting method about bottom events was also recommended which can reduce the size of the BDD effectively.展开更多
In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensiv...In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensively analyze the possibility of the explosions.The 34 basic events that caused hazardous chemical explosions were expounded,and the minimum cut and path sets were obtained.The structure importance of basic events were calculated.According to the minimum path sets,the basic events when the accident does not occur were determined,and combined with the sequence of structure importance,the preventive measures for hazardous chemical explosion accidents were proposed.The fault tree model intuitively clarified the correlation between the direct causes of hazardous chemical explosion accidents,and proposed directions for effectively reducing the probability of hazardous chemical explosion accidents in the chemical industry.展开更多
In order to evaluate the operational reliability of Japanese FBR (fast breeder reactor) MONJU, frequencies of important intermediate events and equipment failures resulting during reactor automatic trip are predicte...In order to evaluate the operational reliability of Japanese FBR (fast breeder reactor) MONJU, frequencies of important intermediate events and equipment failures resulting during reactor automatic trip are predicted using FTA (fault tree analysis) technique for the plant system model. The targeted devices are the following: PHTS (primary heat transport system), SHTS (secondary heat transport system), WS (water and steam system), PPS (plant protection system) and PCS (plant control system). In this paper, the frequency of automatic reactor trips was estimated by extracting and analyzing the important intermediate events and equipment failures covering all the derived fault trees of these systems. The analyses predicted 1.2/RY (reactor year) the value of unplanned shut down frequency by the internal factor of the system. The largest contributed event was function failure of SHTS accounting for 42.6% of total events followed by PHTS with 40.1%. The contribution factor of WS was only 4.4%.展开更多
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air...To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.展开更多
This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic ...This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.展开更多
This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the le...This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.展开更多
Fault tolerant multiple phased systems (FTMPS), i.e., systems whose critical components are independently replicated and whose operational life can be partitioned in a set of disjoint periods, are called 'phases...Fault tolerant multiple phased systems (FTMPS), i.e., systems whose critical components are independently replicated and whose operational life can be partitioned in a set of disjoint periods, are called 'phases'. Because of their deployment in critical applications, their reliability analysis is a task of primary relevance to validate the designs. Fault tree analysis based on binary decision diagram (BDD) is one of the most commonly used techniques for FTMPS reliability analysis. To utilize the technique the fault tree structure of FTMPS needs to be converted into the corresponding BDD format. Our research work shows that the system BDD generation algorithms presented in the literature are too inefficient to be used for industrial complex FTPMS because of the problems, such as variable ordering and combination of large BDDs. This paper presents a more efficient approach consisting of a flatting pre-processing technique, a proved efficient ordering heuristic and a bottom-up generation algorithm. The approach tries to combine share-variable BDDs by complex combination operation firstly and then combine no-share-variable BDDs using simple combination operation, thus to alvoid the intensive computations caused by large BDD combination operations. An example FTMPS is analyzed to illustrate the advantages of our approach.展开更多
The lathes are basic machine tools for manufacturing cylindrical parts. In recent years, the DLseries computer numerical control(CNC) heavy-duty horizontal lathes(HDHLs) have been widely used in the transportation, en...The lathes are basic machine tools for manufacturing cylindrical parts. In recent years, the DLseries computer numerical control(CNC) heavy-duty horizontal lathes(HDHLs) have been widely used in the transportation, energy and aviation industries. High availability of the CNC heavy-duty lathes is demanded to guarantee the efficiency and benefit of these manufacturing industries. As one of the key subsystems of the HDHLs, the feeding control system is studied in this paper on reliability modeling and reliability analysis. The fault tree analysis(FTA) method is used for reliability modelling of the feeding control system. Considering the multiple common cause failure groups(CCFGs) existing in the system, a modified beta factor parametric model is introduced to model the common cause failure(CCF) in system. The reliability of feeding control system is then obtained and the effect of CCF on the reliability of the whole system is studied as well.展开更多
A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the...A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the system are introduced. The software based on Windows platform is used to generate the fuze fault tree in graphics mode. A quantitative analysis of fuze fault tree can be obtained by the method of minimum cut sets. A calculation example is used to verify the function of the software. Consequently, the expected requirements of this software system are achieved to a certain level.展开更多
A new fault tree analysis (FTA) computation method is put forth by using modularization technique in FTA with cut sets matrix, and can reduce NP (Nondeterministic polynomial) difficulty effectively. This software can ...A new fault tree analysis (FTA) computation method is put forth by using modularization technique in FTA with cut sets matrix, and can reduce NP (Nondeterministic polynomial) difficulty effectively. This software can run in IBM PC and DOS 3.0 and up. The method provides theoretical basis and computation tool for application of FTA technique in the common engineering system展开更多
Smart grid was proposed as a practical form of future power distribution system. Evaluating the reliability of smart grids was of great importance and significance. A revised fault tree model was proposed to distingui...Smart grid was proposed as a practical form of future power distribution system. Evaluating the reliability of smart grids was of great importance and significance. A revised fault tree model was proposed to distinguish and separate grid-connected operation mode and islanded operation mode of smart grids,focusing on the perspective of the consumers. A hierarchical Monte Carlo simulation method for reliability evaluation was also proposed based on the proposed fault tree model. A case of reliability evaluation for the future renewable electric energy delivery and management( FREEDM) system was carried out and analyzed. The proposed methods can be applicable to other forms of smart grids.展开更多
An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or p...An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.展开更多
According to the demand of high reliability of the primary cylinder of the hydraulic press, the reliability model of the primary cylinder is built after its reliability analysis. The stress of the primary cylinder is...According to the demand of high reliability of the primary cylinder of the hydraulic press, the reliability model of the primary cylinder is built after its reliability analysis. The stress of the primary cylinder is analyzed by finite element software—MARC, and the structure reliability of the cylinder based on stress strength model is predicted, which would provide the reference to the design.展开更多
In this paper an expert system for remote fault diagnosis in the ship lift was developed by analysis of the fault tree and combination with VPN. The fault tree was constructed based on the operation condition of the s...In this paper an expert system for remote fault diagnosis in the ship lift was developed by analysis of the fault tree and combination with VPN. The fault tree was constructed based on the operation condition of the ship lift. The diagnosis model was constructed by hierarchical classification of the fault tree structure, and the inference mechanism was given. Logical structure of the fault diagnosis in the ship lift was proposed. The implementation of the expert system for remote fault diagnosis in the ship lift was discussed, and the expert system developed was realized on the VPN virtual network. The system was applied to the Gaobaozhou ship lift project, and it ran successfully.展开更多
The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact...The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.展开更多
Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating produc...Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating production, storage and offioading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offioading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.展开更多
Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The q...Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.展开更多
基金supported by Special Fund for Health Sector of China[Grant No.201302006]
文摘Epidemic hemorrhagic fever has been an ongoing threat to laboratory personnel involved in animal care and use. Laboratory transmissions and severe infections occurred over the past twenty years, even though the standards and regulations for laboratory biosafety have been issued, upgraded, and implemented in China. Therefore, there is an urgent need to identify risk factors and to seek effective preventive measures that can curb the incidences of epidemic hemorrhagic fever among laboratory personnel. In the present study, we reviewed literature that relevant to animals laboratory-acquired hemorrhagic fever infections reported from 1995 to 2015, and analyzed these incidences using fault tree analysis (FTA).
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金National High-Tech Research and Development Program(863 Program),China(No.2012AA062001)
文摘In consideration of the uncertainty of basic events failure rate and lack of probability statistical information in fault tree analysis( FTA) of excavator variable-frequency speed control system, the interval theory was employed and combined with conventional FTA method. The basic events failure probabilities were described by interval numbers,and the interval operators of logical gates in FTA were deduced based on interval theory. Finally,the reliability assessment of excavator variable-frequency speed control system was done by interval FTA method. The result shows that the interval FTA method is suitable for the complex system with insufficient failure data.
基金National Science and Technology Major Project of China(No.2013ZX04013-011)
文摘CNC machine tool is a large complex system which contains both mechanical and electrical components.As one of these components,the spindle is crucial for the performance of CNC machine tool.To improve the quality of CNC machine,the reliability of spindle was evaluated in this paper using a fault tree analysis(FTA)method.The FTA method is a set of calculation methods based on Boolean algebra.However,it is difficult to analyze a large and complex fault tree with inaccurate results and low efficiency as well as the complexity of time and space.Both of them will result in the so-called "combinatorial explosion".To overcome this problem,the analysis method based on binary decision diagram(BDD)was introduced in our works,and a sorting method about bottom events was also recommended which can reduce the size of the BDD effectively.
基金Supported by the Science and Technology Plan Project of Liaoning Province,China(2019JH8/10300102)。
文摘In view of the environmental and safety risks of hazardous chemical explosions in chemical enterprises,the fault tree analysis was used to establish a fault tree model of hazardous chemical explosions and comprehensively analyze the possibility of the explosions.The 34 basic events that caused hazardous chemical explosions were expounded,and the minimum cut and path sets were obtained.The structure importance of basic events were calculated.According to the minimum path sets,the basic events when the accident does not occur were determined,and combined with the sequence of structure importance,the preventive measures for hazardous chemical explosion accidents were proposed.The fault tree model intuitively clarified the correlation between the direct causes of hazardous chemical explosion accidents,and proposed directions for effectively reducing the probability of hazardous chemical explosion accidents in the chemical industry.
文摘In order to evaluate the operational reliability of Japanese FBR (fast breeder reactor) MONJU, frequencies of important intermediate events and equipment failures resulting during reactor automatic trip are predicted using FTA (fault tree analysis) technique for the plant system model. The targeted devices are the following: PHTS (primary heat transport system), SHTS (secondary heat transport system), WS (water and steam system), PPS (plant protection system) and PCS (plant control system). In this paper, the frequency of automatic reactor trips was estimated by extracting and analyzing the important intermediate events and equipment failures covering all the derived fault trees of these systems. The analyses predicted 1.2/RY (reactor year) the value of unplanned shut down frequency by the internal factor of the system. The largest contributed event was function failure of SHTS accounting for 42.6% of total events followed by PHTS with 40.1%. The contribution factor of WS was only 4.4%.
文摘To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.
文摘This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.
文摘This paper presents a probabilistic failure analysis of leakage of the oil and gas in a subsea production system using fault tree analysis(FTA).A fault tree was constructed by considering four major areas where the leakages can be initiated.These are:gas and oil wells,pipelines,key facilities and third party damage.Conventional FTA requires precise values for the probability of failure of the basic events.However,since the failure data are uncertain,a fuzzy approach to these data is taken which leads to the so-called fuzzy fault tree analysis(FFTA),a method that employs expert elicitation and fuzzy set theories to calculate the failure probabilities of the intermediate events and the top event through identification of the minimal cut sets of the fault tree.A number of importance measures for minimal cut sets and the basic events have been obtained which helps to identify the nature of dependence of the top event on the basic events and thereby can identify the weakest links that may cause leakage in the subsea production system.
基金the National Natural Science Foundation of China (No. 60503015)
文摘Fault tolerant multiple phased systems (FTMPS), i.e., systems whose critical components are independently replicated and whose operational life can be partitioned in a set of disjoint periods, are called 'phases'. Because of their deployment in critical applications, their reliability analysis is a task of primary relevance to validate the designs. Fault tree analysis based on binary decision diagram (BDD) is one of the most commonly used techniques for FTMPS reliability analysis. To utilize the technique the fault tree structure of FTMPS needs to be converted into the corresponding BDD format. Our research work shows that the system BDD generation algorithms presented in the literature are too inefficient to be used for industrial complex FTPMS because of the problems, such as variable ordering and combination of large BDDs. This paper presents a more efficient approach consisting of a flatting pre-processing technique, a proved efficient ordering heuristic and a bottom-up generation algorithm. The approach tries to combine share-variable BDDs by complex combination operation firstly and then combine no-share-variable BDDs using simple combination operation, thus to alvoid the intensive computations caused by large BDD combination operations. An example FTMPS is analyzed to illustrate the advantages of our approach.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The lathes are basic machine tools for manufacturing cylindrical parts. In recent years, the DLseries computer numerical control(CNC) heavy-duty horizontal lathes(HDHLs) have been widely used in the transportation, energy and aviation industries. High availability of the CNC heavy-duty lathes is demanded to guarantee the efficiency and benefit of these manufacturing industries. As one of the key subsystems of the HDHLs, the feeding control system is studied in this paper on reliability modeling and reliability analysis. The fault tree analysis(FTA) method is used for reliability modelling of the feeding control system. Considering the multiple common cause failure groups(CCFGs) existing in the system, a modified beta factor parametric model is introduced to model the common cause failure(CCF) in system. The reliability of feeding control system is then obtained and the effect of CCF on the reliability of the whole system is studied as well.
文摘A common software to analyze fuze fault tree is developed to simplify the trivialness in generating the fuze fault tree and reduce the manual calculation work. The overall structure, function and implementation of the system are introduced. The software based on Windows platform is used to generate the fuze fault tree in graphics mode. A quantitative analysis of fuze fault tree can be obtained by the method of minimum cut sets. A calculation example is used to verify the function of the software. Consequently, the expected requirements of this software system are achieved to a certain level.
文摘A new fault tree analysis (FTA) computation method is put forth by using modularization technique in FTA with cut sets matrix, and can reduce NP (Nondeterministic polynomial) difficulty effectively. This software can run in IBM PC and DOS 3.0 and up. The method provides theoretical basis and computation tool for application of FTA technique in the common engineering system
文摘Smart grid was proposed as a practical form of future power distribution system. Evaluating the reliability of smart grids was of great importance and significance. A revised fault tree model was proposed to distinguish and separate grid-connected operation mode and islanded operation mode of smart grids,focusing on the perspective of the consumers. A hierarchical Monte Carlo simulation method for reliability evaluation was also proposed based on the proposed fault tree model. A case of reliability evaluation for the future renewable electric energy delivery and management( FREEDM) system was carried out and analyzed. The proposed methods can be applicable to other forms of smart grids.
文摘An improved safety analysis based on the causality diagram for the complex system of micro aero-engines is presented.The study is examined by using the causality diagram in analytical failure cases due to rupture or pentration in the receiver of micro turbojet engine casing,and the comparisons are also made with the results from the traditional fault tree analysis.Experimental results show two main advantages:(1)Quantitative analysis which is more reliable for the failure analysis in jet engines can be produced by the causality diagram analysis;(2)Graphical representation of causality diagram is easier to apply in real test cases and more effective for the safety assessment.
基金This project is supported by Science and Technology Foundation of the Mechanical Ministry! (98250541)
文摘According to the demand of high reliability of the primary cylinder of the hydraulic press, the reliability model of the primary cylinder is built after its reliability analysis. The stress of the primary cylinder is analyzed by finite element software—MARC, and the structure reliability of the cylinder based on stress strength model is predicted, which would provide the reference to the design.
文摘In this paper an expert system for remote fault diagnosis in the ship lift was developed by analysis of the fault tree and combination with VPN. The fault tree was constructed based on the operation condition of the ship lift. The diagnosis model was constructed by hierarchical classification of the fault tree structure, and the inference mechanism was given. Logical structure of the fault diagnosis in the ship lift was proposed. The implementation of the expert system for remote fault diagnosis in the ship lift was discussed, and the expert system developed was realized on the VPN virtual network. The system was applied to the Gaobaozhou ship lift project, and it ran successfully.
基金Naional Natural Science Foundntion of China(No.71761030)
文摘The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.
基金Supported by the Fundamental Research Funds for the Central Universities (HEUCFR1109)"111" projects foundation (Grant No.B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offioading system and fire accidents were analyzed based on the floating production, storage and offioading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offioading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.
基金Sponsored by the Natural Science Foundation of China (Grant No.50278028) the Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT200079).
文摘Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.