Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T...Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.展开更多
In this paper we studied the fault feature of the generator set and the characteristics of wavelet packet theory for signal de noising. The vibration signal of the generator set in different states is analyzed by usi...In this paper we studied the fault feature of the generator set and the characteristics of wavelet packet theory for signal de noising. The vibration signal of the generator set in different states is analyzed by using the signal re construction technique of the wavelet packet theory. The time domain method is given for the generator set fault diagnosis. The experiment results show that the wavelet packet theory can be used to directly identify the state of the generator set and provide a credible new idea for complex machinery fault diagnosis.展开更多
The early impulse fault diagnosis of the gearbox in rolling mills is often difficult and labour intensive because the gearbox of that high speed machine is multi-shafting transmission system,in which many gearsets and...The early impulse fault diagnosis of the gearbox in rolling mills is often difficult and labour intensive because the gearbox of that high speed machine is multi-shafting transmission system,in which many gearsets and rolling bears work together at the same time and there are much complex frequency structure and various disturb.A new time-frequency method based on the wavelet packets technique was developed and used to extract the impact feature from signals collected from faulty data of one rolling mills gearbox.The method improves the signal to noise ration so that results obtained using this method represents features with fine resolution in both low-frequency and the high frequency bands.The results of analysis indicate the validity and the practicability of the method proposed here.展开更多
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ...Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy展开更多
A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and m...A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and mass knowledge of experts. Comparing with conventional off-line yarn test, the new system can find the quality defects of yarn online in time and compensate for the lack of expert knowledge in manual analysis. It can save a lot of yarn wasted in off-line test and improve product quality. By using laser sensor to sample the diameter signal of yarn and doing wavelet analysis and FFT to extract fault characteristics, a set of reasoning mechanism is established to analyze yarn quality and locate the fault origination. The experimental results show that new system can do well in monitoring yarn quality online comparing with conventional off-line yarn test. It can test the quality of yarn in real-time with high efficiency and analyze the fault reason accurately. It is very useful to apply this new system to upgrade yarn quality in cotton textile industry at present.展开更多
Execution of an online detection technique for induction motor fault diagnosis and research at the current period of time is discussed in this paper. Wavelet packets transform (WPT)-based algorithm is used by the dete...Execution of an online detection technique for induction motor fault diagnosis and research at the current period of time is discussed in this paper. Wavelet packets transform (WPT)-based algorithm is used by the detection method for investigating and identification of many disruptions that happen in three-phase induction motors. The association of the coefficients of the WPT of line currents with the help of a main wavelet at the secondary level of resolution with a threshold discovered through an experiment at the time of the vital position can used to observe the motor reference point. The propagation of wavelet analysis and disintegration of the signal into an equivalent bandwidth which can attain a good disintegration of the solution than what wavelet analysis do is called as Wavelet packet analysis. In order to overcome accidental failing, the on-line fault diagnostics technology for the reduction of incipient errors is a must.展开更多
Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't s...Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy resi...A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.展开更多
This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signa...This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults.展开更多
This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the ...This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.展开更多
To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorith...To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas...According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.展开更多
In order to extract fault features of a weak signal from the strong noise and maintain signal smoothness, a new method of denoising based on the algorithm of balanced orthogonal multiwavelets is proposed. Multiwavelet...In order to extract fault features of a weak signal from the strong noise and maintain signal smoothness, a new method of denoising based on the algorithm of balanced orthogonal multiwavelets is proposed. Multiwavelets have several scaling functions and wavelet functions, and possess excellent properties that a scalar wavelet cannot satisfy simultaneously, and match the different characteristics of signals. Moreover, the balanced orthogonal multiwavelets can avoid the Gibbs phenomena and their processes have the advantages in denoising. Therefore, the denoising based on the algorithm of balanced orthogonal multiwavelets is introduced into the signal process. The algorithm of bal- anced orthogonal multiwavelet and the implementation steps of this denoising are described. The experimental compar- ison of the denoising effect between this algorithm and the traditional multiwavelet algorithm was done. The experi- ments indieate that this method is effective and feasible to extract the fault feature submerged in heavy noise.展开更多
Fast Fourier Transform(FFT) frequency spectrum analysis, signal decomposing and reconstraction by wavelet analysis, fractal theory and chaos theory are hot research topics for fault diagnosis and prediction of compl...Fast Fourier Transform(FFT) frequency spectrum analysis, signal decomposing and reconstraction by wavelet analysis, fractal theory and chaos theory are hot research topics for fault diagnosis and prediction of complex machinery so far. In this paper, the characteristics of the FFT method, wavelet method, fractal method, and largest Lyapunov exponent method are studied and analyzed in detail. The advantages and shortcomings of these methods are pointed out respectively. Some unsolved problems are presented here.展开更多
The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condi...The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.展开更多
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envel...A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.展开更多
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction ste...An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50605065)Natural Science Foundation Project of CQ CSTC (No.2007BB2142)
文摘Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.
文摘In this paper we studied the fault feature of the generator set and the characteristics of wavelet packet theory for signal de noising. The vibration signal of the generator set in different states is analyzed by using the signal re construction technique of the wavelet packet theory. The time domain method is given for the generator set fault diagnosis. The experiment results show that the wavelet packet theory can be used to directly identify the state of the generator set and provide a credible new idea for complex machinery fault diagnosis.
文摘The early impulse fault diagnosis of the gearbox in rolling mills is often difficult and labour intensive because the gearbox of that high speed machine is multi-shafting transmission system,in which many gearsets and rolling bears work together at the same time and there are much complex frequency structure and various disturb.A new time-frequency method based on the wavelet packets technique was developed and used to extract the impact feature from signals collected from faulty data of one rolling mills gearbox.The method improves the signal to noise ration so that results obtained using this method represents features with fine resolution in both low-frequency and the high frequency bands.The results of analysis indicate the validity and the practicability of the method proposed here.
基金supported by the National Natural Science Foundation of China(51375405)Independent Project of the State Key Laboratory of Traction Power(2016TP-10)
文摘Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy
文摘A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and mass knowledge of experts. Comparing with conventional off-line yarn test, the new system can find the quality defects of yarn online in time and compensate for the lack of expert knowledge in manual analysis. It can save a lot of yarn wasted in off-line test and improve product quality. By using laser sensor to sample the diameter signal of yarn and doing wavelet analysis and FFT to extract fault characteristics, a set of reasoning mechanism is established to analyze yarn quality and locate the fault origination. The experimental results show that new system can do well in monitoring yarn quality online comparing with conventional off-line yarn test. It can test the quality of yarn in real-time with high efficiency and analyze the fault reason accurately. It is very useful to apply this new system to upgrade yarn quality in cotton textile industry at present.
文摘Execution of an online detection technique for induction motor fault diagnosis and research at the current period of time is discussed in this paper. Wavelet packets transform (WPT)-based algorithm is used by the detection method for investigating and identification of many disruptions that happen in three-phase induction motors. The association of the coefficients of the WPT of line currents with the help of a main wavelet at the secondary level of resolution with a threshold discovered through an experiment at the time of the vital position can used to observe the motor reference point. The propagation of wavelet analysis and disintegration of the signal into an equivalent bandwidth which can attain a good disintegration of the solution than what wavelet analysis do is called as Wavelet packet analysis. In order to overcome accidental failing, the on-line fault diagnostics technology for the reduction of incipient errors is a must.
文摘Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
基金National Natural Science Foundation of China(No.31101085)
文摘A novel fault diagnosis method for sensors in air handling unit(AHU) using wavelet energy entropy was presented. Instead of directly comparing the numerous data under noise conditiom, the wavelet energy entropy residual was compared in the proposed method. Three.level wavelet analysis was used to decompose the measurement data under both fault-free and faulty operation conditions. The concept of Shannon entropy was referred to define wavelet energy entropy of the wavelet coefficients. The sensor faults were diagnosed by comparing the deviation of the wavelet energy entropy of the measured signal and the estimated one with the preset threshold. Testing results showed that the wavelet energy entropy was sensitive to diagnose the biased faults. The wavelet energy entropy residuals exceed the threshold significantly when faults occur. In addition, the severer the faults were, the larger the residuals would be. The results prove that the proposed method is feasible and effective for the fault detection and diagnosis of the sensors.
文摘This study concerns with fault diagnosis of urban rail vehicle auxiliary inverter using wavelet packet and RBF neural network. Four statistical features are selected: standard voltage signal, voltage fluctuation signal, impulsive transient signal and frequency variation signal. In this article, the original signals are decomposed into different frequency subbands by wavelet packet. Next, an automatic feature extraction algorithm is constructed. Finally, those wavelet packet energy eigenvectors are taken as fault samples to train RBF neural network. The result shows that the RBF neural network is effective in the detection and diagnosis of various urban rail vehicle auxiliary inverter faults.
文摘This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.
文摘To effectively extract the interturn short circuit fault features of induction motor from stator current signal, a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed. First, according to the maximum inner product between the current signal and the cosine basis functions, this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO, which can eliminate the fundamental component and not affect other harmonic components. Then, the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor. Finally, the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
文摘According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.
基金supported by Scientific and Technological Foundation of Henan Province under Grant No.112102210128Science Research Project of Educational Department of Henan Province under Grant No.2011C510005
文摘In order to extract fault features of a weak signal from the strong noise and maintain signal smoothness, a new method of denoising based on the algorithm of balanced orthogonal multiwavelets is proposed. Multiwavelets have several scaling functions and wavelet functions, and possess excellent properties that a scalar wavelet cannot satisfy simultaneously, and match the different characteristics of signals. Moreover, the balanced orthogonal multiwavelets can avoid the Gibbs phenomena and their processes have the advantages in denoising. Therefore, the denoising based on the algorithm of balanced orthogonal multiwavelets is introduced into the signal process. The algorithm of bal- anced orthogonal multiwavelet and the implementation steps of this denoising are described. The experimental compar- ison of the denoising effect between this algorithm and the traditional multiwavelet algorithm was done. The experi- ments indieate that this method is effective and feasible to extract the fault feature submerged in heavy noise.
基金This paper is supported by the National Natural Science Foundation of China under Grant No.50705042Aeronautics Foundation under Grant No.2007ZB52022Jiangsu Provincial Universities and Colleges Fundamental Re-search Fund for Natural Science under Grant No.07KJD510132
文摘Fast Fourier Transform(FFT) frequency spectrum analysis, signal decomposing and reconstraction by wavelet analysis, fractal theory and chaos theory are hot research topics for fault diagnosis and prediction of complex machinery so far. In this paper, the characteristics of the FFT method, wavelet method, fractal method, and largest Lyapunov exponent method are studied and analyzed in detail. The advantages and shortcomings of these methods are pointed out respectively. Some unsolved problems are presented here.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175007,51075023)
文摘The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.
基金Supported by National Natural Science Foundation of China(Grant No.51475034)
文摘A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.
基金Supported by National High-Tech Program of China (No. 2001AA413110).
文摘An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.