This paper deals with the problem of fault diagnosis problem for a class of linear systems with delayed state and uncertainty. The systems are transformed into two different subsystems. One is not affected by actuator...This paper deals with the problem of fault diagnosis problem for a class of linear systems with delayed state and uncertainty. The systems are transformed into two different subsystems. One is not affected by actuator faults so that a robust observer can be designed under certain conditions. The other whose states can be measured is affected by the faults. The proposed observer is utilized in an analytical-redundancy-based approach for actuator and sensor fault detection and diagnosis in time-delay systems. Finally, the applicability and effectiveness of the proposed method is illustrated through numerical examples.展开更多
This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distr...This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.展开更多
The paper tackles the problem of robust fault detection using Takagi-Sugeno fuzzy models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunat...The paper tackles the problem of robust fault detection using Takagi-Sugeno fuzzy models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such a method is corrupted by model uncertainty due to the fact that in real applications there exists a model-reality mismatch. In order to ensure reliable fault detection the adaptive threshold technique is used to deal with the mentioned problem. The paper focuses also on fuzzy model design procedure. The bounded-error approach is applied to generating the rules for the model using available measurements. The proposed approach is applied to fault detection in the DC laboratory engine.展开更多
A new fuzzy logic fault diagnosis method is proposed. In this method, fuzzy equations are employed to estimate the component state of a system based on the measured system performance and the relationship between comp...A new fuzzy logic fault diagnosis method is proposed. In this method, fuzzy equations are employed to estimate the component state of a system based on the measured system performance and the relationship between component state and system performance which is called as “performance-parameter” knowledge base and constructed by expert. Compared with the traditional fault diagnosis method, this fuzzy logic method can use human's intuitive knowledge and dose not need a precise mapping between system performance and component state. Simulation proves its effectiveness in fault diagnosis. Then, the reliability analysis is performed based on the fuzzy logic method.展开更多
Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear sy...Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.展开更多
Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault qu...Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.展开更多
According to the fault characteristic of the imperial smelting process (ISP), a novel intelligent integrated fault diagnostic system is developed. In the system fuzzy neural networks are utilized to extract fault sy...According to the fault characteristic of the imperial smelting process (ISP), a novel intelligent integrated fault diagnostic system is developed. In the system fuzzy neural networks are utilized to extract fault symptom and expert system is employed for effective fault diagnosis of the process. Furthermore, fuzzy abductive inference is introduced to diagnose multiple faults. Feasibility of the proposed system is demonstrated through a pilot plant case study.展开更多
A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d...A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.展开更多
As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection and diagnosis system become more and more important. In this article some basic aspects of TSK (...As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection and diagnosis system become more and more important. In this article some basic aspects of TSK (Takigi Sugeno Kang) neuro-fuzzy techniques for the prognosis and diagnosis of manufacturing systems are presented. In particular, a neuro-fuzzy model that can be used for the identification and the simulation of faults prognosis models is described. The presented model is motivated by a cooperative neuro-fuzzy approach based on a vectorized recurrent neural network architecture. The neuro-fuzzy architecture maps the residuals into two classes: a one of fixed direction residuals and another one of faults belonging to rotary kiln.展开更多
On the basis of the analysis of faults and their causes of vacuum resin shot dosing equipment, the fuzzy model of fault diagnosis for the equipment is constructed, and the fuzzy relationship matrix, the symptom fuzzy ...On the basis of the analysis of faults and their causes of vacuum resin shot dosing equipment, the fuzzy model of fault diagnosis for the equipment is constructed, and the fuzzy relationship matrix, the symptom fuzzy vector, the fuzzy compound arithmetic operator, and the diagnosis principle of the model are determined. Then the fault auto-diagnosis system for the equipment is designed , and the functions for real-time monitoring its operation condition and for fault auto diagosis are realized. Finally, the experiments of fault auto-diagnosis are conducted in practical production and the veracity of the system is verified.展开更多
This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is for...This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques.展开更多
The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes...The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.展开更多
轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),...轴承作为旋转机械的重要组件之一,及时对其进行健康监测与更换可有效避免设备停机,减少经济损失。首先基于自构建关联噪声驱动下的随机共振系统(stochastic resonance system driven by self-constructingly correlated noise, DSCSR),推导了在正弦激励下该系统输出的理论信噪比(signal-to-noise ratio, SNR)。研究发现通过调节此非线性系统的参数可观察到随机共振现象。其次,针对将随机共振现象用于故障诊断时需要准确的先验知识这一局限性,进一步提出了基于功率谱的信噪比评价指标,并以此来确定非线性系统随机共振发生时的最优系统参数,对最优参数系统输出信号进行功率谱分析来判断故障类型。最后,通过轴承故障诊断试验以及实际风机轴承内圈故障实例证明了DSCSR方法的有效性,以及其增强微弱故障特征并抑制其他谐波以及噪声的干扰的能力。展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 60274058)
文摘This paper deals with the problem of fault diagnosis problem for a class of linear systems with delayed state and uncertainty. The systems are transformed into two different subsystems. One is not affected by actuator faults so that a robust observer can be designed under certain conditions. The other whose states can be measured is affected by the faults. The proposed observer is utilized in an analytical-redundancy-based approach for actuator and sensor fault detection and diagnosis in time-delay systems. Finally, the applicability and effectiveness of the proposed method is illustrated through numerical examples.
文摘This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.
文摘The paper tackles the problem of robust fault detection using Takagi-Sugeno fuzzy models. A model-based strategy is employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such a method is corrupted by model uncertainty due to the fact that in real applications there exists a model-reality mismatch. In order to ensure reliable fault detection the adaptive threshold technique is used to deal with the mentioned problem. The paper focuses also on fuzzy model design procedure. The bounded-error approach is applied to generating the rules for the model using available measurements. The proposed approach is applied to fault detection in the DC laboratory engine.
文摘A new fuzzy logic fault diagnosis method is proposed. In this method, fuzzy equations are employed to estimate the component state of a system based on the measured system performance and the relationship between component state and system performance which is called as “performance-parameter” knowledge base and constructed by expert. Compared with the traditional fault diagnosis method, this fuzzy logic method can use human's intuitive knowledge and dose not need a precise mapping between system performance and component state. Simulation proves its effectiveness in fault diagnosis. Then, the reliability analysis is performed based on the fuzzy logic method.
文摘Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.
基金The 11th Five-year National Defense Preliminary Research Projects (B0520060455)
文摘Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle.
基金This work was supported by National 973 Program (No. 2002CB312200)National Natural Science Foundation of PRC (No. 60634020).
文摘According to the fault characteristic of the imperial smelting process (ISP), a novel intelligent integrated fault diagnostic system is developed. In the system fuzzy neural networks are utilized to extract fault symptom and expert system is employed for effective fault diagnosis of the process. Furthermore, fuzzy abductive inference is introduced to diagnose multiple faults. Feasibility of the proposed system is demonstrated through a pilot plant case study.
文摘A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.
文摘As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection and diagnosis system become more and more important. In this article some basic aspects of TSK (Takigi Sugeno Kang) neuro-fuzzy techniques for the prognosis and diagnosis of manufacturing systems are presented. In particular, a neuro-fuzzy model that can be used for the identification and the simulation of faults prognosis models is described. The presented model is motivated by a cooperative neuro-fuzzy approach based on a vectorized recurrent neural network architecture. The neuro-fuzzy architecture maps the residuals into two classes: a one of fixed direction residuals and another one of faults belonging to rotary kiln.
文摘On the basis of the analysis of faults and their causes of vacuum resin shot dosing equipment, the fuzzy model of fault diagnosis for the equipment is constructed, and the fuzzy relationship matrix, the symptom fuzzy vector, the fuzzy compound arithmetic operator, and the diagnosis principle of the model are determined. Then the fault auto-diagnosis system for the equipment is designed , and the functions for real-time monitoring its operation condition and for fault auto diagosis are realized. Finally, the experiments of fault auto-diagnosis are conducted in practical production and the veracity of the system is verified.
基金This work was supported by the Alexander von Humboldt Foundation.
文摘This paper proposes a parity relation based fault estimation for a class of nonlinear systems which can be modelled by Takagi-Sugeno (TS) fuzzy models. The design of a parity relation based residual generator is formulated in terms of a family of linear matrix inequalities (LMIs). A numerical example is provided to illustrate the effectiveness of the proposed design techniques.
基金The Natural Science Foundation of Jiangsu Province (BK200402)Key Project of Chinese Ministry of Education(105088)
文摘The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. The system stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.