Novel fault-tolerant architectures for bit-parallel polynomial basis multiplier over GF(2^m), which can correct the erroneous outputs using linear code, are presented. A parity prediction circuit based on the code g...Novel fault-tolerant architectures for bit-parallel polynomial basis multiplier over GF(2^m), which can correct the erroneous outputs using linear code, are presented. A parity prediction circuit based on the code generator polynomial that leads lower space overhead has been designed. For bit-parallel architectures, the Moreover, there is incorporation of space overhead only marginal time error-correction is about 11%. overhead due to capability that amounts to 3.5% in case of the bit-parallel multiplier. Unlike the existing concurrent error correction (CEC) multipliers or triple modular redundancy (TMR) techniques for single error correction, the proposed architectures have multiple error-correcting capabilities.展开更多
On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftersh...On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftershocks within the first 60 hours to determine the focal mechanism solutions of the mainshock and some of the aftershocks and to invert for the finite-fault model of the mainshock.The focal mechanism solution of the mainshock and the relocation results of the aftershocks constrain the mainshock on a nearly vertical fault plane striking northeast and dipping to the southeast. The inversion of the finite-fault model reveals only a single slip asperity on the fault plane. The major slip is distributed above the initiation point, ~14 km wide along the down-dip direction and ~14 km long along the strike direction, with a maximal slip of ~22 cm at a depth of ~6 km. The focal mechanism solutions of the aftershocks show that most of the aftershocks are of the strike-slip type, a number of them are of the normal-slip type, and only a few of them are of the thrust-slip type.On average, strike-slip is dominant on the fault plane of the mainshock, as the focal mechanism solution of the mainshock suggests, but when examined in detail, slight thrust-slip appears on the southwest of the fault plane while an obvious part of normal-slip appears on the northeast, which is consistent with what the focal mechanism solutions of the aftershocks display. The multiple types of aftershock focal mechanism solutions and the slip details of the mainshock both suggest a complex tectonic setting, stress setting, or both. The intensity contours predicted exhibit a longer axis trending from northeast to southwest and a maximal intensity of Ⅷ around the epicenter and in the northwest.展开更多
针对容错模式下的统一电能质量调节器(Unified Power Quality Conditioner,UPQC),提出了一种五桥臂形式的新型拓扑结构,实现故障下的电能质量扰动综合补偿。在此基础上,对串联变流器和并联变流器进行统一建模,提出了一种基于有限集模型...针对容错模式下的统一电能质量调节器(Unified Power Quality Conditioner,UPQC),提出了一种五桥臂形式的新型拓扑结构,实现故障下的电能质量扰动综合补偿。在此基础上,对串联变流器和并联变流器进行统一建模,提出了一种基于有限集模型预测控制(Finite Control Set Model Predictive Control,FCS-MPC)的五桥臂UPQC控制策略。相比传统线性控制策略,所提算法构建了统一的预测模型以及整合优化的价值函数,实现串联变流器与并联变流器的协同控制,提高了两侧变流器的补偿精度、暂态性能以及响应速度,有效降低了控制算法的复杂度和参数调节难度,并具有较高的参数鲁棒性。仿真结果验证了所提算法的可行性和有效性。展开更多
Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines...Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines,which bring great impacts to industrial development and human society.This paper investigates and discusses the advantages control strategies for electric machines,including the field oriented control(FOC),direct torque control(DTC),finite control set model predictive control(FCS-MPC),sensorless control,and fault tolerant control(FTC).The corresponding control principles,control targets,fundamental approaches,advanced approaches,methodologies,merits and shortcomings are revealed and analyzed in detail.展开更多
基金supported by the National Science Council of the Republic of China,Taiwan,under Grant No.NSC 98-2221-E-262-007
文摘Novel fault-tolerant architectures for bit-parallel polynomial basis multiplier over GF(2^m), which can correct the erroneous outputs using linear code, are presented. A parity prediction circuit based on the code generator polynomial that leads lower space overhead has been designed. For bit-parallel architectures, the Moreover, there is incorporation of space overhead only marginal time error-correction is about 11%. overhead due to capability that amounts to 3.5% in case of the bit-parallel multiplier. Unlike the existing concurrent error correction (CEC) multipliers or triple modular redundancy (TMR) techniques for single error correction, the proposed architectures have multiple error-correcting capabilities.
基金supported by the National Natural Science Foundation of China(project 41804088)the Special Fund of the Institute of Geophysics,China Earthquake Administration(project DQJB19B08)
文摘On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftershocks within the first 60 hours to determine the focal mechanism solutions of the mainshock and some of the aftershocks and to invert for the finite-fault model of the mainshock.The focal mechanism solution of the mainshock and the relocation results of the aftershocks constrain the mainshock on a nearly vertical fault plane striking northeast and dipping to the southeast. The inversion of the finite-fault model reveals only a single slip asperity on the fault plane. The major slip is distributed above the initiation point, ~14 km wide along the down-dip direction and ~14 km long along the strike direction, with a maximal slip of ~22 cm at a depth of ~6 km. The focal mechanism solutions of the aftershocks show that most of the aftershocks are of the strike-slip type, a number of them are of the normal-slip type, and only a few of them are of the thrust-slip type.On average, strike-slip is dominant on the fault plane of the mainshock, as the focal mechanism solution of the mainshock suggests, but when examined in detail, slight thrust-slip appears on the southwest of the fault plane while an obvious part of normal-slip appears on the northeast, which is consistent with what the focal mechanism solutions of the aftershocks display. The multiple types of aftershock focal mechanism solutions and the slip details of the mainshock both suggest a complex tectonic setting, stress setting, or both. The intensity contours predicted exhibit a longer axis trending from northeast to southwest and a maximal intensity of Ⅷ around the epicenter and in the northwest.
文摘针对容错模式下的统一电能质量调节器(Unified Power Quality Conditioner,UPQC),提出了一种五桥臂形式的新型拓扑结构,实现故障下的电能质量扰动综合补偿。在此基础上,对串联变流器和并联变流器进行统一建模,提出了一种基于有限集模型预测控制(Finite Control Set Model Predictive Control,FCS-MPC)的五桥臂UPQC控制策略。相比传统线性控制策略,所提算法构建了统一的预测模型以及整合优化的价值函数,实现串联变流器与并联变流器的协同控制,提高了两侧变流器的补偿精度、暂态性能以及响应速度,有效降低了控制算法的复杂度和参数调节难度,并具有较高的参数鲁棒性。仿真结果验证了所提算法的可行性和有效性。
基金Supported by the general program of National Natural Science Foundation of China under Grant 51677159a grant(Project No.CityU 21201216)from the Research Grants Council of HKSAR,China.
文摘Control strategies play a key role for operation of electric machines,which would directly affect the whole system performance.In fact,different control strategies have been executed and explored for electric machines,which bring great impacts to industrial development and human society.This paper investigates and discusses the advantages control strategies for electric machines,including the field oriented control(FOC),direct torque control(DTC),finite control set model predictive control(FCS-MPC),sensorless control,and fault tolerant control(FTC).The corresponding control principles,control targets,fundamental approaches,advanced approaches,methodologies,merits and shortcomings are revealed and analyzed in detail.