Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understand...Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.展开更多
Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in eac...Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.展开更多
As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent...As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent QKD protocols,and they commonly rely on the deployment of single-protocol trusted relay chains for long reach.Driven by the evolution of QKD protocols,large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm,during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated.In this work,we delve into a pivotal technique for large-scale QKD networking,namely,multi-protocol relay chaining.A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes.The structures of diverse multi-protocol relay chains are described,based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains.Furthermore,we propose three multi-protocol relay chaining heuristics.Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.展开更多
For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service...For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.展开更多
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect...The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.展开更多
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da...Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality.展开更多
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3...Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tole...Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.展开更多
The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
This paper presents Isotope, an efficient, locality aware, fault-tolerant, and decentralized scheme for data location in distributed networks. This scheme is designed based on the mathematical model of decentralized l...This paper presents Isotope, an efficient, locality aware, fault-tolerant, and decentralized scheme for data location in distributed networks. This scheme is designed based on the mathematical model of decentralized location services and thus has provable correctness and performance. In Isotope, each node needs to only maintain linkage information with about O(log n) other nodes and any node can be reached within O(log n) routing hops. Compared with other related schemes, Isotope’s average locating path length is only half that of Chord, and its locating performance and locality-awareness are similar to that of Pastry and Tapestry. In addition, Isotope is more suitable for constantly changing networks because it needs to exchange only O(log n) O(log n) messages to update the routing information for nodes arrival, departure and failure.展开更多
Based on their "Theorem 2", an O(δ)-time algorithm of searching for the shortest path between each pair of nodes in a double loop network was proposed by K.Mukhopadyaya, et al.(1995). While, unfortunately, ...Based on their "Theorem 2", an O(δ)-time algorithm of searching for the shortest path between each pair of nodes in a double loop network was proposed by K.Mukhopadyaya, et al.(1995). While, unfortunately, it will be proved that both "Theorem 2" and its proof are in error. A new and more faster O(△)-time, △≤δ, algorithm will be presented in this paper.展开更多
Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this probl...Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance.展开更多
Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolera...Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay.展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research–Shanghai Jiao Tong University.
文摘Friendship paradox states that individuals are likely to have fewer friends than their friends do,on average.Despite of its wide existence and appealing applications in real social networks,the mathematical understanding of friendship paradox is very limited.Only few works provide theoretical evidence of single-step and multi-step friendship paradoxes,given that the neighbors of interest are onehop and multi-hop away from the target node.However,they consider non-evolving networks,as opposed to the topology of real social networks that are constantly growing over time.We are thus motivated to present a first look into friendship paradox in evolving networks,where newly added nodes preferentially attach themselves to those with higher degrees.Our analytical verification of both single-step and multistep friendship paradoxes in evolving networks,along with comparison to the non-evolving counterparts,discloses that“friendship paradox is even more paradoxical in evolving networks”,primarily from three aspects:1)we demonstrate a strengthened effect of single-step friendship paradox in evolving networks,with a larger probability(more than 0.8)of a random node’s neighbors having higher average degree than the random node itself;2)we unravel higher effectiveness of multi-step friendship paradox in seeking for influential nodes in evolving networks,as the rate of reaching the max degree node can be improved by a factor of at least Θ(t^(2/3))with t being the network size;3)we empirically verify our findings through both synthetic and real datasets,which suggest high agreements of results and consolidate the reasonability of evolving model for real social networks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61763009 and 72172025)。
文摘Research on the self-similarity of multilayer networks is scarce, when compared to the extensive research conducted on the dynamics of these networks. In this paper, we use entropy to determine the edge weights in each sub-network,and apply the degree–degree distance to unify the weight values of connecting edges between different sub-networks, and unify the edges with different meanings in the multilayer network numerically. At this time, the multilayer network is compressed into a single-layer network, also known as the aggregated network. Furthermore, the self-similarity of the multilayer network is represented by analyzing the self-similarity of the aggregate network. The study of self-similarity was conducted on two classical fractal networks and a real-world multilayer network. The results show that multilayer networks exhibit more pronounced self-similarity, and the intensity of self-similarity in multilayer networks can vary with the connection mode of sub-networks.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62201276,62350001,U22B2026,and 62471248)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)+1 种基金the Key R&D Program(Industry Foresight and Key Core Technologies)of Jiangsu Province(Grant No.BE2022071)Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJB510007)。
文摘As the first stage of the quantum Internet,quantum key distribution(QKD)networks hold the promise of providing long-term security for diverse users.Most existing QKD networks have been constructed based on independent QKD protocols,and they commonly rely on the deployment of single-protocol trusted relay chains for long reach.Driven by the evolution of QKD protocols,large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm,during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated.In this work,we delve into a pivotal technique for large-scale QKD networking,namely,multi-protocol relay chaining.A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes.The structures of diverse multi-protocol relay chains are described,based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains.Furthermore,we propose three multi-protocol relay chaining heuristics.Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.
基金supported by Research and Application of Edge IoT Technology for Distributed New Energy Consumption in Distribution Areas,Project Number(5108-202218280A-2-394-XG)。
文摘For permanent faults(PF)in the power communication network(PCN),such as link interruptions,the timesensitive networking(TSN)relied on by PCN,typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability,which often limits TSN scheduling performance in fault-free ideal states.So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism(GRFS)for data flow in PCN,which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding(CQF)model and fault recovery method,which reduces the impact of faults by simplified scheduling configurations of CQF and fault-tolerance of prioritizing the rerouting of faulty time-sensitive(TS)flows;considering that PF leading to changes in network topology is more appropriately solved by doing routing and time slot injection decisions hop-by-hop,and that reasonable network load can reduce the damage caused by PF and reserve resources for the rerouting of faulty TS flows,an optimization model for joint routing and scheduling is constructed with scheduling success rate as the objective,and with traffic latency and network load as constraints;to catch changes in TSN topology and traffic load,a D3QN algorithm based on a multi-head graph attention residual network(MGAR)is designed to solve the problem model,where the MGAR based encoder reconstructs the TSN status into feature embedding vectors,and a dueling network decoder performs decoding tasks on the reconstructed feature embedding vectors.Simulation results show that GRFS outperforms heuristic fault-tolerance algorithms and other benchmark schemes by approximately 10%in routing and scheduling success rate in ideal states and 5%in rerouting and rescheduling success rate in fault states.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2024JJ2044,and 2021JJ40444)+3 种基金the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC3054)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(Grant No.CX20240831)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN0015)the Doctoral Research Fund of University of South China(Grant No.200XQD033)。
文摘The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips.
文摘Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality.
文摘Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金Major State Basic Research Development Program,China(No.2005CB221505)Special Scientific Research Foundation for Doctoral Subject of Colleges and Universities in China(No.20050248058)
文摘Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60073074).
文摘This paper presents Isotope, an efficient, locality aware, fault-tolerant, and decentralized scheme for data location in distributed networks. This scheme is designed based on the mathematical model of decentralized location services and thus has provable correctness and performance. In Isotope, each node needs to only maintain linkage information with about O(log n) other nodes and any node can be reached within O(log n) routing hops. Compared with other related schemes, Isotope’s average locating path length is only half that of Chord, and its locating performance and locality-awareness are similar to that of Pastry and Tapestry. In addition, Isotope is more suitable for constantly changing networks because it needs to exchange only O(log n) O(log n) messages to update the routing information for nodes arrival, departure and failure.
基金Supported by the National Natural Science Foundation of China(No.69772035)
文摘Based on their "Theorem 2", an O(δ)-time algorithm of searching for the shortest path between each pair of nodes in a double loop network was proposed by K.Mukhopadyaya, et al.(1995). While, unfortunately, it will be proved that both "Theorem 2" and its proof are in error. A new and more faster O(△)-time, △≤δ, algorithm will be presented in this paper.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.F2012203179 and F2014203239)
文摘Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance.
基金The National Natural Science Foundation of China (No. 60602029, No. 60772088)
文摘Most routing protocols for sensor networks try to extend network lifetime by minimizing the energy consumption, but have not taken the network reliability into account. An energy-aware, load-balancing and fault-tolerant routing scheme, termed as ELFR was propsed to adapt to the harsh environment. First a network robustness model was presented. Based on this model, the route discovery phase was designed to make the sensors to construct into a hop-leveled network which is mesh structure. A cross-layer design was adopted to measure the transmission delay so as to detect the failed nodes. The routing scheme works with acknowledge (ACK) feedback mechanism to transfer control messages to avoid producing extra control overhead messages. When nodes fail, the new healthy paths will be selected locally without rerouting. Simulation results show that our scheme is much robust, and it achieves better energy efficiency, load balancing and maintains good end-to-end delay.
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.