To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. T...To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization p...To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the q...In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.展开更多
The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain ...The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain has become very important,and effective coordination of project plans at all levels to optimize the resource management and scheduling of a project is helpful to reduce project duration and cost.In this paper,under the milestone constraint conditions,the scheduling problems of multiple construction devices in the same sequence of operation were described and hypothesized mathematically,and the scheduling models of multiple equipment were established.The Palmer algorithm,CDS algorithm and Gupta algorithm were respectively used to solve the optimal scheduling of construction equipment to achieve the optimization of the construction period.The optimization scheduling of a single construction device and multiple construction devices was solved by using sequencing theory under milestone constraint,and these methods can obtain reasonable results,which has important guiding significance for the scheduling of construction equipment.展开更多
This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denote...This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.展开更多
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper...The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.展开更多
In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA...In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori...To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility.展开更多
In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is ...In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is proposed to solve the model.Simulation results show that the algorithm can improve the utilization of berths on discrete berth scheduling in the container port.展开更多
Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,...Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.展开更多
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i...In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.展开更多
Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. ...Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem.展开更多
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
文摘To make the on-board computer system more dependable and real-time in a satellite, an algorithm of the fault-tolerant scheduling in the on-board computer system with high priority recovery is proposed in this paper. This algorithm can schedule the on-board fault-tolerant tasks in real time. Due to the use of dependability cost, the overhead of scheduling the fault-tolerant tasks can be reduced. The mechanism of the high priority recovery will improve the response to recovery tasks. The fault-tolerant scheduling model is presented simulation results validate the correctness and feasibility of the proposed algorithm.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
文摘To improve the productivity,the resource utilization and reduce the production cost of flexible job shops,this paper designs an improved two-layer optimization algorithm for the dual-resource scheduling optimization problem of flexible job shop considering workpiece batching.Firstly,a mathematical model is established to minimize the maximum completion time.Secondly,an improved two-layer optimization algorithm is designed:the outer layer algorithm uses an improved PSO(Particle Swarm Optimization)to solve the workpiece batching problem,and the inner layer algorithm uses an improved GA(Genetic Algorithm)to solve the dual-resource scheduling problem.Then,a rescheduling method is designed to solve the task disturbance problem,represented by machine failures,occurring in the workshop production process.Finally,the superiority and effectiveness of the improved two-layer optimization algorithm are verified by two typical cases.The case results show that the improved two-layer optimization algorithm increases the average productivity by 7.44% compared to the ordinary two-layer optimization algorithm.By setting the different numbers of AGVs(Automated Guided Vehicles)and analyzing the impact on the production cycle of the whole order,this paper uses two indicators,the maximum completion time decreasing rate and the average AGV load time,to obtain the optimal number of AGVs,which saves the cost of production while ensuring the production efficiency.This research combines the solved problem with the real production process,which improves the productivity and reduces the production cost of the flexible job shop,and provides new ideas for the subsequent research.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金supported by ZTE Industry-University-Institute Cooperation Funds。
文摘In recent years,various internet architectures,such as Integrated Services(IntServ),Differentiated Services(DiffServ),Time Sensitive Networking(TSN)and Deterministic Networking(DetNet),have been proposed to meet the quality-of-service(QoS)requirements of different network services.Concurrently,network calculus has found widespread application in network modeling and QoS analysis.Network calculus abstracts the details of how nodes or networks process data packets using the concept of service curves.This paper summarizes the service curves for typical scheduling algorithms,including Strict Priority(SP),Round Robin(RR),Cycling Queuing and Forwarding(CQF),Time Aware Shaper(TAS),Credit Based Shaper(CBS),and Asynchronous Traffic Shaper(ATS).It introduces the theory of network calculus and then provides an overview of various scheduling algorithms and their associated service curves.The delay bound analysis for different scheduling algorithms in specific scenarios is also conducted for more insights.
文摘The scheduling of construction equipment is a means to realize network planning.With the large-scale and low-cost requirements of engineering construction,the cooperation among members of the engineering supply chain has become very important,and effective coordination of project plans at all levels to optimize the resource management and scheduling of a project is helpful to reduce project duration and cost.In this paper,under the milestone constraint conditions,the scheduling problems of multiple construction devices in the same sequence of operation were described and hypothesized mathematically,and the scheduling models of multiple equipment were established.The Palmer algorithm,CDS algorithm and Gupta algorithm were respectively used to solve the optimal scheduling of construction equipment to achieve the optimization of the construction period.The optimization scheduling of a single construction device and multiple construction devices was solved by using sequencing theory under milestone constraint,and these methods can obtain reasonable results,which has important guiding significance for the scheduling of construction equipment.
文摘This study examines the multicriteria scheduling problem on a single machine to minimize three criteria: the maximum cost function, denoted by maximum late work (V<sub>max</sub>), maximum tardy job, denoted by (T<sub>max</sub>), and maximum earliness (E<sub>max</sub>). We propose several algorithms based on types of objectives function to be optimized when dealing with simultaneous minimization problems with and without weight and hierarchical minimization problems. The proposed Algorithm (3) is to find the set of efficient solutions for 1//F (V<sub>max</sub>, T<sub>max</sub>, E<sub>max</sub>) and 1//(V<sub>max</sub> + T<sub>max</sub> + E<sub>max</sub>). The Local Search Heuristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied to solve all suggested problems. Finally, the experimental results of Algorithm (3) are compared with the results of the Branch and Bound (BAB) method for optimal and Pareto optimal solutions for smaller instance sizes and compared to the Local Search Heuristic Methods for large instance sizes. These results ensure the efficiency of Algorithm (3) in a reasonable time.
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
文摘The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.
基金The National Natural Science Foundation of China(No.61273035,71471135)
文摘In order to improve the efficiency of operating rooms,reduce the costs for hospitals and improve the level of service qualities, a scheduling method was developed based on an estimation of distribution algorithm( EDA). First, a scheduling problem domain is described. Based on assignment constraints and resource capacity constraints, the mathematical programming models are set up with an objective function to minimize the system makespan. On the basis of the descriptions mentioned above, a solution policy of generating feasible scheduling solutions is established. Combined with the specific constraints of operating theatres, the EDA-based algorithm is put forward to solve scheduling problems. Finally, simulation experiments are designed to evaluate the scheduling method. The orthogonal table is chosen to determine the parameters in the proposed method. Then the genetic algorithm and the particle swarm optimization algorithm are chosen for comparison with the EDA-based algorithm, and the results indicate that the proposed method can decrease the makespan of the surgical system regardless of the size of operations. Moreover, the computation time of the EDA-based algorithm is only approximately 5 s when solving the large scale problems, which means that the proposed algorithm is suitable for carrying out an on-line scheduling optimization of the patients.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
基金The US National Science Foundation (No. CMMI-0408390, CMMI-0644552)the Research Fellowship for International Young Scientists (No. 51050110143)+2 种基金the Fok Ying-Tong Education Foundation(No. 114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility.
文摘In this paper,the berth scheduling problem is transformed into a special two-dimensional packing problem with some constraints.A nonlinear programming model for the problem is established,and a heuristic algorithm is proposed to solve the model.Simulation results show that the algorithm can improve the utilization of berths on discrete berth scheduling in the container port.
基金supported in part by the National Natural Science Foundation of China(61603169,61773192,61803192)in part by the funding from Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technologyin part by Singapore National Research Foundation(NRF-RSS2016-004)
文摘Flexible job shop scheduling problems(FJSP)have received much attention from academia and industry for many years.Due to their exponential complexity,swarm intelligence(SI)and evolutionary algorithms(EA)are developed,employed and improved for solving them.More than 60%of the publications are related to SI and EA.This paper intents to give a comprehensive literature review of SI and EA for solving FJSP.First,the mathematical model of FJSP is presented and the constraints in applications are summarized.Then,the encoding and decoding strategies for connecting the problem and algorithms are reviewed.The strategies for initializing algorithms?population and local search operators for improving convergence performance are summarized.Next,one classical hybrid genetic algorithm(GA)and one newest imperialist competitive algorithm(ICA)with variables neighborhood search(VNS)for solving FJSP are presented.Finally,we summarize,discus and analyze the status of SI and EA for solving FJSP and give insight into future research directions.
基金Supported by the National Basic ResearchProgramof China (973 Program2003CB314804)
文摘In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
基金Supported by the National 863 Project (No. 2003AA412010) and the National 973 Program of China (No. 2002CB312201)
文摘Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem.
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.