It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a nove...Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金Project (61203021) supported by the National Natural Science Foundation of ChinaProject (2011216011) supported by the Key Science and Technology Program of Liaoning Province,China+1 种基金Project (2013020024) supported by the Natural Science Foundation of Liaoning Province,ChinaProject (LJQ2015061) supported by the Program for Liaoning Excellent Talents in Universities,China
文摘Fault diagnosis plays an important role in complicated industrial process.It is a challenging task to detect,identify and locate faults quickly and accurately for large-scale process system.To solve the problem,a novel Multi Boost-based integrated ENN(extension neural network) fault diagnosis method is proposed.Fault data of complicated chemical process have some difficult-to-handle characteristics,such as high-dimension,non-linear and non-Gaussian distribution,so we use margin discriminant projection(MDP) algorithm to reduce dimensions and extract main features.Then,the affinity propagation(AP) clustering method is used to select core data and boundary data as training samples to reduce memory consumption and shorten learning time.Afterwards,an integrated ENN classifier based on Multi Boost strategy is constructed to identify fault types.The artificial data sets are tested to verify the effectiveness of the proposed method and make a detailed sensitivity analysis for the key parameters.Finally,a real industrial system—Tennessee Eastman(TE) process is employed to evaluate the performance of the proposed method.And the results show that the proposed method is efficient and capable to diagnose various types of faults in complicated chemical process.