期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system
1
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
下载PDF
Auditory-model-based Feature Extraction Method for Mechanical Faults Diagnosis 被引量:12
2
作者 LI Yungong ZHANG Jinping +2 位作者 DAI Li ZHANG Zhanyi LIU Jie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期391-397,共7页
It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory... It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect. 展开更多
关键词 faults diagnosis feature extraction auditory model early auditory model
下载PDF
Stator Winding Turn Faults Diagnosis for Induction Motor by Immune Memory Dynamic Clonal Strategy Algorithm
3
作者 吴洪兵 楼佩煌 唐敦兵 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期276-281,共6页
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the... Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors. 展开更多
关键词 artificial immune system dynamic clonal strategy fault diagnosis stator winding MOTOR
下载PDF
Open-Circuit Faults Diagnosis in Direct-Drive PMSG Wind Turbine Converter
4
作者 Wei Zhang Qihui Ling +1 位作者 Qiancheng Zhao Hushu Wu 《Energy Engineering》 EI 2021年第5期1515-1535,共21页
The condition monitoring and fault diagnosis have been identified as the key to achieving higher availabilities of wind turbines.Numerous studies show that the open-circuit fault is a significant contributor to the fa... The condition monitoring and fault diagnosis have been identified as the key to achieving higher availabilities of wind turbines.Numerous studies show that the open-circuit fault is a significant contributor to the failures of wind turbine converter.However,the multiple faults combinations and the influence of wind speed changes abruptly,grid voltage sags and noise interference have brought great challenges to fault diagnosis.Accordingly,concerning the open-circuit fault of converters in direct-driven PMSG wind turbine,a diagnostic method for multiple open-circuit faults is proposed in this paper,which is divided into two tasks:The first one is the fault detection and the second one is the fault localization.The detection method is based on the relative current residuals after exponential transformation and on an adaptive threshold,and the localization method is based on the average values of fault phase currents.The scheduled diagnosis method is available to both the generator-side converter and the grid-side converter,allowing to detect and locate single and double open-circuit faults.For validating this,robustness test and multiple open-circuit faults diagnosis are presented in a 2-MW direct-driven PMSG wind turbine system,the results validate the reliability and effectiveness of the proposed method. 展开更多
关键词 Wind turbine CONVERTER open-circuit fault fault diagnosis exponential transformation
下载PDF
Intelligent System Design for Stator Windings Faults Diagnosis:Suitable for Maintenance Work
5
作者 Lane M.Rabelo Baccarini Vinícius S.Avelar +1 位作者 Valceres Vieira R.E.Silva Gleison F.V.Amaral 《Journal of Software Engineering and Applications》 2013年第10期526-532,共7页
The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this... The short circuit is a severe fault that occurs in the stator windings. Therefore, it is very important to diagnose this type of failure in its beginning before it causes unscheduled stop and the machine loss. In this context, the Support Vector Machine (SVM) is a tool of considerable importance for standard classification. From some training data, it can diagnose whether or not there is a short circuit beginning, and which is important for predictive maintenance. This work proposes a technique for early detection of a short circuit between the turns aiming at its implementation in a real plant. The paper shows simulation and experimental results, and validates the proposed technique. 展开更多
关键词 Fault diagnosis Support Vector Machines Maintenance Work Software Tool Winding Short-Circuit
下载PDF
Development of CIMS and FMS in Faults Diagnosis System
6
作者 GAOLi-hui WANGRong-xiao 《International Journal of Plant Engineering and Management》 2002年第4期185-190,共6页
The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation an... The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation and reference for the design of a fault diagnosis system. This paper focuses on its function of directing to the design of a fault diagnosis system in terms of the flexibility of the system, the human's importance in the system, and the design of a distributed system. In view of the tendency of CIMS and FMS, the article also states the principle that the new fault diagnosis system should be improved by enhancing hardware in software, remote Internet service, and sustainable development. 展开更多
关键词 CIMS FMS fault diagnosis system
下载PDF
Distributed fault diagnosis observer for multi-agent system against actuator and sensor faults 被引量:1
7
作者 YE Zhengyu JIANG Bin +2 位作者 CHENG Yuehua YU Ziquan YANG Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期766-774,共9页
Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method f... Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations. 展开更多
关键词 multi-agent system(MAS) sensor fault actuator fault unknown input observer sliding mode fault diagnosis
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
8
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation
9
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
10
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Uncertainty-Aware Deep Learning: A Promising Tool for Trustworthy Fault Diagnosis
11
作者 Jiaxin Ren Jingcheng Wen +3 位作者 Zhibin Zhao Ruqiang Yan Xuefeng Chen Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1317-1330,共14页
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack... Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind. 展开更多
关键词 Out-of-distribution detection traceability analysis trustworthy fault diagnosis uncertainty quantification.
下载PDF
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
12
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 Network fault diagnosis edge networks Izhikevich neurons PRUNING dynamic spike timing dependent plasticity learning
下载PDF
Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis
13
作者 Kwok Tai Chui Brij B.Gupta +1 位作者 Varsha Arya Miguel Torres-Ruiz 《Computers, Materials & Continua》 SCIE EI 2024年第1期1363-1379,共17页
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo... The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains. 展开更多
关键词 Deep learning incremental learning machine fault diagnosis negative transfer transfer learning
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
14
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM
15
作者 Chunming Wu Shupeng Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4395-4411,共17页
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa... Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models. 展开更多
关键词 Bearing fault diagnosis convolutional neural network short-long-term memory network feature fusion
下载PDF
Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine
16
作者 Chen Chen Zhongwei Xu +2 位作者 Meng Mei Kai Huang Siu Ming Lo 《Computers, Materials & Continua》 SCIE EI 2024年第6期4533-4549,共17页
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori... Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score. 展开更多
关键词 Railway switch machine tensor machine fault diagnosis
下载PDF
Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects
17
作者 Bo Yang Yucun Qian +2 位作者 Jianzhong Xu Yaxing Ren Yixuan Chen 《Energy Engineering》 EI 2024年第8期2085-2091,共7页
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to... 1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5]. 展开更多
关键词 Lithium batteries optimization operation MODELLING state estimation life prediction fault diagnosis
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM
18
作者 Jiajie He Fuzheng Liu +3 位作者 Xiangyi Geng Xifeng Liang Faye Zhang Mingshun Jiang 《Structural Durability & Health Monitoring》 EI 2024年第1期37-54,共18页
Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and relia... Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods,making it challenging to ensure the fault diagnosis accuracy and reliability.A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator(ESGMD-CC)and artificial fish swarm algorithm(AFSA)optimized extreme learning machine(ELM)is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis.Firstly,SGMD decomposes the raw vibration signal into multiple Symplectic geometry components(SGCs).Secondly,the iterations are reset by the cosine difference limitation to effectively separate the redundant components from the representative components.Additionally,the calculus operator is performed to strengthen weak fault features and make them easier to extract,and the singular value decomposition(SVD)weighted by power spectrum entropy(PSE)can be utilized as the sample feature representation.Finally,AFSA iteratively optimized ELM is adopted as the optimized classifier for fault identification.The superior performance of the proposed method has been validated by various experiments. 展开更多
关键词 Symplectic geometry mode decomposition calculus operator cosine difference limitation fault diagnosis AFSAELM model
下载PDF
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
19
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows
20
作者 Haomiao Wang Jinxi Wang +4 位作者 Qingmei Sui Faye Zhang Yibin Li Mingshun Jiang Phanasindh Paitekul 《Structural Durability & Health Monitoring》 EI 2024年第2期91-110,共20页
Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the de... Due to their robust learning and expression ability for complex features,the deep learning(DL)model plays a vital role in bearing fault diagnosis.However,since there are fewer labeled samples in fault diagnosis,the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields,which limits the diagnostic performance.To solve this problem,a novel transfer residual Swin Transformer(RST)is proposed for rolling bearings in this paper.RST has 24 residual self-attention layers,which use the hierarchical design and the shifted window-based residual self-attention.Combined with transfer learning techniques,the transfer RST model uses pre-trained parameters from ImageNet.A new end-to-end method for fault diagnosis based on deep transfer RST is proposed.Firstly,wavelet transform transforms the vibration signal into a wavelet time-frequency diagram.The signal’s time-frequency domain representation can be represented simultaneously.Secondly,the wavelet time-frequency diagram is the input of the RST model to obtain the fault type.Finally,our method is verified on public and self-built datasets.Experimental results show the superior performance of our method by comparing it with a shallow neural network. 展开更多
关键词 Rolling bearing fault diagnosis TRANSFORMER self-attention mechanism
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部