期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进UFSA算法的车道线检测研究 被引量:1
1
作者 王祥 柯福阳 +1 位作者 朱节中 夏德铸 《计算机仿真》 北大核心 2023年第5期213-219,共7页
由于传统车道线检测方法存在计算量大、无视觉线索和车道线遮挡等主要问题,制约着车道线检测的发展。目前,UFSA(UltraFast Structure-aware)算法的提出可以有效解决上述问题,并在车道线检测领域广泛的应用。而UFSA算法存在网络卷积和池... 由于传统车道线检测方法存在计算量大、无视觉线索和车道线遮挡等主要问题,制约着车道线检测的发展。目前,UFSA(UltraFast Structure-aware)算法的提出可以有效解决上述问题,并在车道线检测领域广泛的应用。而UFSA算法存在网络卷积和池化提取特征会丢失重要信息、边界信息不够敏感等问题,故加入ASPP(Atrous Spatial Pyramid Pooling)空洞金字塔池化与FCANet(Frequency Channel Attention)频率域通道注意力的融合机制定义为FCASPP(Frequency Channel Attention Spatial Pyramid Pooling),上述机制能够有效地在大感受野时,获取更丰富上下文信息并提取更有用和紧致的特征而抑制噪声信息,L-Dice(Lane Dice Loss)函数比Softmax函数更加关注车道边界的信息。通过消融实验验证了上述改进的有效性,且无需添加任何计算量。在TuSimple和CULane两个基准数据集中,检测精度与原文相比,分别提高了0.21个百分点和1.7个百分点,速度与原文相当,所提算法较具竞争力。 展开更多
关键词 车道线检测 频率域通道注意力 空洞金字塔池化 检测精度
下载PDF
改进YOLOv5网络在遥感图像目标检测中的应用 被引量:8
2
作者 周华平 郭伟 《遥感信息》 CSCD 北大核心 2022年第5期23-30,共8页
针对遥感图像目标检测存在的尺度多样化、分布密集、小目标检测困难等问题,提出了一种改进YOLOv5网络的遥感图像目标检测的新方法Fca_YOLOv5。该方法引入了频率通道注意力网络,引导模型更加关注信息丰富的特征;将网络输入尺寸优化为1 0... 针对遥感图像目标检测存在的尺度多样化、分布密集、小目标检测困难等问题,提出了一种改进YOLOv5网络的遥感图像目标检测的新方法Fca_YOLOv5。该方法引入了频率通道注意力网络,引导模型更加关注信息丰富的特征;将网络输入尺寸优化为1 024,减少了图像缩放带来的影响;采用圆形平滑标签计算角度损失,对船舰目标进行旋转目标检测,进一步提升检测效果。在DOTA遥感图像数据集上进行实验,检测精度最高达到了75.9%,船舰旋转目标检测精度达到了96.1%,并且Fca_YOLOv5s的检测精度比YOLOv5s提高了3.1%。实验结果表明,改进网络对遥感图像中的微小目标具有较好的检测效果,有效提升了遥感图像的检测精度,对实现遥感图像中的微小目标检测具有一定的参考意义。 展开更多
关键词 YOLOv5 频率通道注意力机制 网络输入尺寸 圆形平滑标签 小目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部