As persulfate(S_(2)O_(8)^(2-))is being increasingly used as an alternative oxidizing agent,developing lowcost and eco-friendly catalysts for efficient S_(2)O_(8)^(2-)activation is potentially useful for the treatment ...As persulfate(S_(2)O_(8)^(2-))is being increasingly used as an alternative oxidizing agent,developing lowcost and eco-friendly catalysts for efficient S_(2)O_(8)^(2-)activation is potentially useful for the treatment of wastewater containing refractory organic pollutant.In this study,the degradative features and mechanisms of carbamazepine(CBZ)were systematically investigated in a novel FeS-S_(2)O_(8)^(2-)process under near-neutral conditions.The results exhibited that CBZ can be effectively eliminated by the FeS-S_(2)O_(8)^(2-)process and the optimal conditions were:250 mg/L FeS,0.5 mmol/L S_(2)O_(8)^(2-),and pH=6.0.The existence of Cl^(−)(1 and 50 mmol/L)has little influence on the CBZ elimination,while both HCO_(3)^(−) and HPO_(4)^(2−)(1 and 50 mmol/L)significantly suppressed the CBZ removal in the FeS-S_(2)O_(8)^(2-)process.CBZ could be degraded via a radical mechanism in the FeS-S_(2)O_(8)^(2-)process,the working radical species(i.e.,SO_(4)•−and•OH)were efficiently formed via the promoted decomposition of S_(2)O_(8)^(2-)by the surface Fe2+on the FeS and the dissolved ferrous ions in solution.Based on the identified oxidized products and Fukui index calculations,a possible degradation pathway of CBZ was speculated.More importantly,a two-stage oxidation mechanism of CBZ elimination was speculated in the FeS-S_(2)O_(8)^(2-)process,the activation of S_(2)O_(8)^(2-)by the surface-active Fe(II)of FeS dominated in the initial 5 min,while homogeneous oxidation reactions played more essential parts than others in the following reaction stage(5–60 min).Overall,this study demonstrated that the FeS-S_(2)O_(8)^(2-)process is capable of removing CBZ from water efficiently.展开更多
基金the National Natural Science Foundation of China(No.52100060)the Natural Science Foundation of Hubei Province,China(No.2020CFB383)for the financial support。
文摘As persulfate(S_(2)O_(8)^(2-))is being increasingly used as an alternative oxidizing agent,developing lowcost and eco-friendly catalysts for efficient S_(2)O_(8)^(2-)activation is potentially useful for the treatment of wastewater containing refractory organic pollutant.In this study,the degradative features and mechanisms of carbamazepine(CBZ)were systematically investigated in a novel FeS-S_(2)O_(8)^(2-)process under near-neutral conditions.The results exhibited that CBZ can be effectively eliminated by the FeS-S_(2)O_(8)^(2-)process and the optimal conditions were:250 mg/L FeS,0.5 mmol/L S_(2)O_(8)^(2-),and pH=6.0.The existence of Cl^(−)(1 and 50 mmol/L)has little influence on the CBZ elimination,while both HCO_(3)^(−) and HPO_(4)^(2−)(1 and 50 mmol/L)significantly suppressed the CBZ removal in the FeS-S_(2)O_(8)^(2-)process.CBZ could be degraded via a radical mechanism in the FeS-S_(2)O_(8)^(2-)process,the working radical species(i.e.,SO_(4)•−and•OH)were efficiently formed via the promoted decomposition of S_(2)O_(8)^(2-)by the surface Fe2+on the FeS and the dissolved ferrous ions in solution.Based on the identified oxidized products and Fukui index calculations,a possible degradation pathway of CBZ was speculated.More importantly,a two-stage oxidation mechanism of CBZ elimination was speculated in the FeS-S_(2)O_(8)^(2-)process,the activation of S_(2)O_(8)^(2-)by the surface-active Fe(II)of FeS dominated in the initial 5 min,while homogeneous oxidation reactions played more essential parts than others in the following reaction stage(5–60 min).Overall,this study demonstrated that the FeS-S_(2)O_(8)^(2-)process is capable of removing CBZ from water efficiently.