用微乳液法制备了明胶复合的纳米Co Fe O体。将明胶和亚铁盐以及钴盐制成凝胶,使该凝胶状反应物在微乳液的胶束中反应,再被还原-化合-成核长大。用XRD、TEM、SEM、EDS、IR等测试表明:微粉为明胶包裹的球形纳米微球。生成的微粒处于明胶...用微乳液法制备了明胶复合的纳米Co Fe O体。将明胶和亚铁盐以及钴盐制成凝胶,使该凝胶状反应物在微乳液的胶束中反应,再被还原-化合-成核长大。用XRD、TEM、SEM、EDS、IR等测试表明:微粉为明胶包裹的球形纳米微球。生成的微粒处于明胶蛋白分子的包裹之中,单个微粒的粒径3 3~4 6nm,每个复合微球中约有3~22个Co Fe O体粒子组成,微球的平均粒径为10~100nm,Co-Fe-O体复合微粉的比饱和磁化强度σs=1 532kAm-1·g-1;矫顽力Hc=18 4kAm-1;剩磁σr=322 5Am-1·g-1。展开更多
The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more ...The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more Fe-Cr or Fe-Cr-Ni solution and less residual carbon content were obtained at higher temperatures and lower initial molar ratio of C to O (nC:nO). The degree of reduction was highly dependent on both time and temperature, and the residual carbon content greatly increased with increasing nC:nO at each temperature. The products generated during the carbothermic reduction of the Fe-Cr-O system were examined using X-ray diffraction (XRD). A scanning electron microscope (SEM) coupled with energy dispersive spectrometer was used to observe the microstructure and the distribution of elements in the various phases of the final reduction products of the Fe-Cr-O and Fe-Cr-Ni-O.展开更多
利用二极溅射的方法在不同衬底上沉积了Fe N O薄膜。通过扫描电子显微镜(SEM)、光电子能谱(XPS)和透射电子显微镜(TEM)等先进实验分析手段对二极溅射沉积Fe N O薄膜的形貌与结构进行了分析。XPS和TEM的结果表明,薄膜的主要成分为FeO和...利用二极溅射的方法在不同衬底上沉积了Fe N O薄膜。通过扫描电子显微镜(SEM)、光电子能谱(XPS)和透射电子显微镜(TEM)等先进实验分析手段对二极溅射沉积Fe N O薄膜的形貌与结构进行了分析。XPS和TEM的结果表明,薄膜的主要成分为FeO和少量的Fe16N2多晶体组成,生长上存在择优取向;表面均匀、致密、平整,晶粒大小在50nm左右。展开更多
文摘用微乳液法制备了明胶复合的纳米Co Fe O体。将明胶和亚铁盐以及钴盐制成凝胶,使该凝胶状反应物在微乳液的胶束中反应,再被还原-化合-成核长大。用XRD、TEM、SEM、EDS、IR等测试表明:微粉为明胶包裹的球形纳米微球。生成的微粒处于明胶蛋白分子的包裹之中,单个微粒的粒径3 3~4 6nm,每个复合微球中约有3~22个Co Fe O体粒子组成,微球的平均粒径为10~100nm,Co-Fe-O体复合微粉的比饱和磁化强度σs=1 532kAm-1·g-1;矫顽力Hc=18 4kAm-1;剩磁σr=322 5Am-1·g-1。
基金Project (51074025) supported by the National Natural Science Foundation of ChinaProject (FRF-SD-12-009A) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reduction behaviors and characteristics of products of the Fe-Cr-O system (FeCr2O4 and Fe2O3+Cr2O3) and Fe-Cr-Ni-O system (Fe2O3+Cr2O3+NiO) under various conditions were studied. The results show that more Fe-Cr or Fe-Cr-Ni solution and less residual carbon content were obtained at higher temperatures and lower initial molar ratio of C to O (nC:nO). The degree of reduction was highly dependent on both time and temperature, and the residual carbon content greatly increased with increasing nC:nO at each temperature. The products generated during the carbothermic reduction of the Fe-Cr-O system were examined using X-ray diffraction (XRD). A scanning electron microscope (SEM) coupled with energy dispersive spectrometer was used to observe the microstructure and the distribution of elements in the various phases of the final reduction products of the Fe-Cr-O and Fe-Cr-Ni-O.
文摘利用二极溅射的方法在不同衬底上沉积了Fe N O薄膜。通过扫描电子显微镜(SEM)、光电子能谱(XPS)和透射电子显微镜(TEM)等先进实验分析手段对二极溅射沉积Fe N O薄膜的形貌与结构进行了分析。XPS和TEM的结果表明,薄膜的主要成分为FeO和少量的Fe16N2多晶体组成,生长上存在择优取向;表面均匀、致密、平整,晶粒大小在50nm左右。