The possible geometries of Fe(HCN)n (n = 1~6) compounds were studied by using + DFT/UB3LYP/6-31G(2df) method. The structure and ground state ...The possible geometries of Fe(HCN)n (n = 1~6) compounds were studied by using + DFT/UB3LYP/6-31G(2df) method. The structure and ground state of each fragmental ion are C∞v (4Σ+ or Σ ), D∞h (4Σg ), D3 (4A1 ), C2 or Td or C3v (4A1), and D3 (4A1 ) or C4 ( A1 ) sequentially 6 + + ′ ′ ′ 2 ′ h v h v with n = 1~5. For the compound Fe(HCN)6 , the possible geometry was not obtained. The + sequential incremental interaction energy (–?(?E)), dissociation energy (?D0), enthalpy (–?(?H)) and Gibbs free energy (–?(?G)), and frequencies for HCN-Fe(HCN)n + -1 were also calculated, and the results are all in good agreement with the experiments. The bond length of Fe–N is lengthened with the increase of cluster size, and the strength of Fe+–N coordination bond varies nonmon- tonically as increasing the number of ligands. The Fe+–N bond of Fe(HCN)2 is the strongest in all + compounds.展开更多
基金This research was supported by the National Natural Science Foundation of China (20273013 20303002)+1 种基金 the Key Foundation of Fujian Province (K02012) the Foundation of State Key Laboratory of Structural Chemistry (020051) and of Fuzhou University
文摘The possible geometries of Fe(HCN)n (n = 1~6) compounds were studied by using + DFT/UB3LYP/6-31G(2df) method. The structure and ground state of each fragmental ion are C∞v (4Σ+ or Σ ), D∞h (4Σg ), D3 (4A1 ), C2 or Td or C3v (4A1), and D3 (4A1 ) or C4 ( A1 ) sequentially 6 + + ′ ′ ′ 2 ′ h v h v with n = 1~5. For the compound Fe(HCN)6 , the possible geometry was not obtained. The + sequential incremental interaction energy (–?(?E)), dissociation energy (?D0), enthalpy (–?(?H)) and Gibbs free energy (–?(?G)), and frequencies for HCN-Fe(HCN)n + -1 were also calculated, and the results are all in good agreement with the experiments. The bond length of Fe–N is lengthened with the increase of cluster size, and the strength of Fe+–N coordination bond varies nonmon- tonically as increasing the number of ligands. The Fe+–N bond of Fe(HCN)2 is the strongest in all + compounds.