The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials....The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials. The amorphous and crystalline states, and thermal parameters, such as the glass transition temperature (Tg), the initial crystallization temperature (Tx), the supercooled liquid region (ΔTx=Tx-Tg), the reduced glass transition temperature T<sup>rg (Tg/Tm, Tm: the onset temperature of melting of the alloy, and Tg/Tl, Tl: the finished temperature of melting of the alloy) were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis. Glass forming ability of Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1,3,5,7,9) bulk metallic glasses has been studied. According to the results, the alloy (x=7) with the highest T<sup>rg (Tg/Tl=0.607, Tg/Tl=0.590) value, has the strongest glass forming ability among these alloys because its composition is near eutectic composition. The wide supercooled liquid region over 72 K indicates the high thermal stability for this alloy system. This bulk metallic glass exhibits quite high strength (Hv 1020). The success of production of the Fe-based bulk metallic glass with industrial materials is of great significance for the future progress of basic research and practical application.展开更多
The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niob...The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.展开更多
文摘The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials. The amorphous and crystalline states, and thermal parameters, such as the glass transition temperature (Tg), the initial crystallization temperature (Tx), the supercooled liquid region (ΔTx=Tx-Tg), the reduced glass transition temperature T<sup>rg (Tg/Tm, Tm: the onset temperature of melting of the alloy, and Tg/Tl, Tl: the finished temperature of melting of the alloy) were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis. Glass forming ability of Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1,3,5,7,9) bulk metallic glasses has been studied. According to the results, the alloy (x=7) with the highest T<sup>rg (Tg/Tl=0.607, Tg/Tl=0.590) value, has the strongest glass forming ability among these alloys because its composition is near eutectic composition. The wide supercooled liquid region over 72 K indicates the high thermal stability for this alloy system. This bulk metallic glass exhibits quite high strength (Hv 1020). The success of production of the Fe-based bulk metallic glass with industrial materials is of great significance for the future progress of basic research and practical application.
基金support from the Australian Research Council(ARC)Linkage Project(LP200200689).
文摘The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires.