Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s...Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.展开更多
The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyan...The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.展开更多
Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic...Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic particles) were optimized and 8 different human whole blood samples were used to purify genomic DNA under the optimal condition. Then agarose gel electrophoresis and polymerase cbain reaction (PCR) were performed. Results: The optimal binding condition was 1.5 mol/L NaC1/10% PEG, and the optimal amount of Fe3O4/Au composite particles was 600μg. The yields of the genomic DNA from 100μl of different whole blood samples were 2-5 μg, and the ratio of A260/A280 was in the range of 1.70-1.90. The size of genomic DNA was about 23 kb and the PCR was valid. Conclusion: The purification system using Fe3O4/Au composite microparticles has advantages in high yield, high purity, ease of operating, time saving and avoiding centrifugation. The purified sample was found to function satisfactorily in PCR amplification.展开更多
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch...The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.展开更多
One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT...One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.展开更多
A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a...A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.展开更多
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasif...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800℃. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and whereas no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods.展开更多
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ...With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).展开更多
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
基金supported by the Tianjin Committee of Science and Technology (No.14JCZDJC32400)Tianjin Science and Technology Innovation Platform Program (No.14TXGCCX00017)
文摘Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres.
基金Supported by the Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(No.2016ZX05060)the Demonstration of Integrated Management of Rocky Desertification and Enhancement of Ecological Service Function in Karst Peak-cluster Depression(No.2016YFC0502400)National Natural Science Foundation of China(No.51709254)
文摘The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.
基金Supported by the National High Technology Research and Development Program of China (2006AA020705)
文摘Objective: To establish a method of genomic DNA extraction from whole blood using Fe3O4/Au composite particles as a carrier. Methods: Two crucial conditions (sodium chloride concentration and amount of the magnetic particles) were optimized and 8 different human whole blood samples were used to purify genomic DNA under the optimal condition. Then agarose gel electrophoresis and polymerase cbain reaction (PCR) were performed. Results: The optimal binding condition was 1.5 mol/L NaC1/10% PEG, and the optimal amount of Fe3O4/Au composite particles was 600μg. The yields of the genomic DNA from 100μl of different whole blood samples were 2-5 μg, and the ratio of A260/A280 was in the range of 1.70-1.90. The size of genomic DNA was about 23 kb and the PCR was valid. Conclusion: The purification system using Fe3O4/Au composite microparticles has advantages in high yield, high purity, ease of operating, time saving and avoiding centrifugation. The purified sample was found to function satisfactorily in PCR amplification.
文摘The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.
基金Funded by the National Natural Science Foundation of China (No. 50674048)Research Fund for the Doctoral Program of Higher Education of China(No.20103227110006)
文摘One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074040,11504192,11674187,11604172,and 51403114)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2012FZ006 and BS2014CL010)the China Postdoctoral Science Foundation(Grant Nos.2014M551868 and 2015M570570)
文摘A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders.
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China(20776092)
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800℃. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and whereas no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods.
文摘With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM).