The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debata...The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..展开更多
To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selec...To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.展开更多
Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensiv...Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensive and continuous role of plant litter, different mass ratios(0%,5%, 20%) of litter were added into the sediments to study the influence of litter decomposition on the overlying water and sediments. The changes in pH, EC, Eh, Fe, and Mn of the overlying water and the organic matter in the sediments and the forms of Fe and Mn after 1, 7, 14, 21, and 28 days of litter decomposition were studied. The results indicated that litter decomposition increased the pH, EC, and reduced Eh of the overlying water. Litter decomposition promoted the release of Fe and Mn from the sediments into the overlying water and with the continuous decomposition of litter, the concentration of Fe and Mn in the overlying water declined. Litter decomposition increased the content of the organic matter in the sediment, and the forms of Fe and Mn indicated that litter decomposition could significantly affect the transformation of the forms of Fe and Mn.Reducible Fe was the main form in the sediments. Litter decomposition promoted the transformation of reducible Fe, the main form found in the sediments, intoexchangeable and oxidizable Fe, but had no effect on residual form. Exchangeable Mn was the main form in the sediments, and litter decomposition accelerated the transformation of reducible Mn, most commonly found in the sediments, into oxidizable Mn and had little influence on the exchangeable and residual forms.展开更多
With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Cr...With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Crimea), Kvirinaki and Tetritskaro (Georgia), Aimaki, Bass, Dzhengutaj, Madzhalis and Gergebil (North Caucasus, Russia), Klyuchi and Tep-lovka (Volga Region, Russia), Koshak (Kazakhstan), Kara-Kala and Khalats (Turkmenistan). The age of sediments varies from Miocene to Early Cretaceous. Iron particles are present at 521samples out of 921studied. Their percentage varies from 10-5% to 0.05%. The distribution consists of two groups: 1) “zero” group (iron is not found by TMA);2) group of logarithmic normal distribution with a differing modes. The global enrichment by iron particles in synchronous deposits of Miocene, Maastrichtian-Danian, Santonian and Cenomanian was discovered. With respect to nickel content, the iron particles fall into two groups: 1) nearly pure iron without nickel;and 2) iron with nickel content up to 20%, with modal value of 5%. The source of iron particles is the cosmic dust. Particles of pure nickel and the alloy containing more of 20% of nickel are very rare. Possibly, such particles are related mainly with impact events. A peak of elevated iron content with nearly constant nickel of 5-6% was found in almost all studied sections. It is a global effect which is not dependent of place and time of deposition of iron particles.展开更多
基金supported by the Project of the National Natural Science Foundation of China (Grant No. 41572093, 41072083, 40602011)the Open Foundation of Shangdong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineralthe Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology
文摘The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..
基金Supported by the National Natural Science Foundation of China(No.50879025)the Scientific Start-up Fund from North China Electric Power University, China(No.X60218)the National Basic Research Program of China(No.2004CB3418501).
文摘To reveal the relative contribution of the components, Fe, Mn oxides or organic materials(OMs) in the surficial sediments(SSs), and the natural surface coating samples(NSCSs) to adsorbing atrazine(AT), a selective chemical extraction technique was employed, to remove the different components, and the adsorption characteristics of AT on the SSs and the NSCSs were investigated. The observed adsorptions of AT on the original and extracted SSs and NSCSs were analyzed by nonlinear least squares fitting(NLSF) to estimate the relative contribution of the components. The results showed that the maximum adsorption of AT on the NSCSs was greater than that in the SSs, before and after extraction treatments, implying that the NSCSs were more dominant than the SSs for organic pollutant adsorption. It was also found that the Fe oxides, OMs, and residues in SSs(NSCSs) facilitated the adsorption of AT, but Mn oxides directly or indirectly restrained the interaction of AT with SSs(NSCSs) particles. The contribution of the Fe oxides to AT adsorption was more than that of OMs; the greatest contribution to AT adsorption on a molar basis was from the Fe oxides in the nonresidual fractions, indicating that the Fe oxides played an important role in controlling the environmental behavior of AT in an aquatic environment.
基金provided by the United Fund of Guizhou Province Government and National Natural Science Foundation of China (No. U1612442)the Natural and Science Project by the Education Department of Guizhou Province (Nos. KY2016011, GZZ201607, and ZDXK201611)
文摘Plant litter will influence the bioavailability of heavy metals in sediments of wetlands used to treat acid mine drainage. To investigate the effect of plant litter on sediments in wetlands and define the comprehensive and continuous role of plant litter, different mass ratios(0%,5%, 20%) of litter were added into the sediments to study the influence of litter decomposition on the overlying water and sediments. The changes in pH, EC, Eh, Fe, and Mn of the overlying water and the organic matter in the sediments and the forms of Fe and Mn after 1, 7, 14, 21, and 28 days of litter decomposition were studied. The results indicated that litter decomposition increased the pH, EC, and reduced Eh of the overlying water. Litter decomposition promoted the release of Fe and Mn from the sediments into the overlying water and with the continuous decomposition of litter, the concentration of Fe and Mn in the overlying water declined. Litter decomposition increased the content of the organic matter in the sediment, and the forms of Fe and Mn indicated that litter decomposition could significantly affect the transformation of the forms of Fe and Mn.Reducible Fe was the main form in the sediments. Litter decomposition promoted the transformation of reducible Fe, the main form found in the sediments, intoexchangeable and oxidizable Fe, but had no effect on residual form. Exchangeable Mn was the main form in the sediments, and litter decomposition accelerated the transformation of reducible Mn, most commonly found in the sediments, into oxidizable Mn and had little influence on the exchangeable and residual forms.
文摘With the aid of thermomagnetic analysis (TMA) up to 800ºС the composition and distribution of particles of native iron and Fe-Ni alloy was studied in 15 sections, Gams (Austria), Verhorechie and Selbuhra (Crimea), Kvirinaki and Tetritskaro (Georgia), Aimaki, Bass, Dzhengutaj, Madzhalis and Gergebil (North Caucasus, Russia), Klyuchi and Tep-lovka (Volga Region, Russia), Koshak (Kazakhstan), Kara-Kala and Khalats (Turkmenistan). The age of sediments varies from Miocene to Early Cretaceous. Iron particles are present at 521samples out of 921studied. Their percentage varies from 10-5% to 0.05%. The distribution consists of two groups: 1) “zero” group (iron is not found by TMA);2) group of logarithmic normal distribution with a differing modes. The global enrichment by iron particles in synchronous deposits of Miocene, Maastrichtian-Danian, Santonian and Cenomanian was discovered. With respect to nickel content, the iron particles fall into two groups: 1) nearly pure iron without nickel;and 2) iron with nickel content up to 20%, with modal value of 5%. The source of iron particles is the cosmic dust. Particles of pure nickel and the alloy containing more of 20% of nickel are very rare. Possibly, such particles are related mainly with impact events. A peak of elevated iron content with nearly constant nickel of 5-6% was found in almost all studied sections. It is a global effect which is not dependent of place and time of deposition of iron particles.