【目的】探索建立基于近红外光谱技术的土壤微量元素监测技术。【方法】采集三峡库区(重庆)主要加工甜橙基地果园背景土壤样品168个,随机选取100个作为建模样本,其余为检验样本;测定所有样本的近红外反射光谱和土壤Fe、Mn、Zn全含量;运...【目的】探索建立基于近红外光谱技术的土壤微量元素监测技术。【方法】采集三峡库区(重庆)主要加工甜橙基地果园背景土壤样品168个,随机选取100个作为建模样本,其余为检验样本;测定所有样本的近红外反射光谱和土壤Fe、Mn、Zn全含量;运用最佳光谱预处理方法和偏最小二乘法(partial least square method,PLS)及内部交叉验证方法建立校正模型,并进行模型精度检验。【结果】变量标准化(standard normal variables,SNV)为土壤Fe、Mn、Zn含量近红外光谱预测的最佳光谱预处理方法;运用SNV光谱预处理和偏最小二乘法(PLS)及内部交叉验证法建立的土壤Fe、Mn、Zn含量校正模型,95%置信区间内的预测精度分别为92.65%、95.59%和95.59%。【结论】利用近红外反射光谱技术进行土壤Fe、Mn、Zn含量检测可行且精度较高。展开更多
文摘【目的】探索建立基于近红外光谱技术的土壤微量元素监测技术。【方法】采集三峡库区(重庆)主要加工甜橙基地果园背景土壤样品168个,随机选取100个作为建模样本,其余为检验样本;测定所有样本的近红外反射光谱和土壤Fe、Mn、Zn全含量;运用最佳光谱预处理方法和偏最小二乘法(partial least square method,PLS)及内部交叉验证方法建立校正模型,并进行模型精度检验。【结果】变量标准化(standard normal variables,SNV)为土壤Fe、Mn、Zn含量近红外光谱预测的最佳光谱预处理方法;运用SNV光谱预处理和偏最小二乘法(PLS)及内部交叉验证法建立的土壤Fe、Mn、Zn含量校正模型,95%置信区间内的预测精度分别为92.65%、95.59%和95.59%。【结论】利用近红外反射光谱技术进行土壤Fe、Mn、Zn含量检测可行且精度较高。