The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the ...The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.展开更多
In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size...In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size,texture coefficient,microstrain,dislocation densities etc.were evaluated from the X ray diffratometry(XRD)data.XRD data revealed a polycrystalline anatase TiO_(2)phase for sample synthesized up to 2 vol%and mixed anatase and rutile crystalline phase for sample synthesized at 4 vol%Fe doped TiO_(2).The crystalline size was observed to decrease with increase in Fe dopant vol%and also other structural parameters changes with Fe dopant percentage.In the present work,electrical resistance was observed to decrease with a rise in Fe dopant vol%and temperature of the sample.Thermal properties like temperature coefficient of resistance and activation energy also showed strong correlation with Fe dopant vol%.Humidity sensing properties of the synthesized sample altered with a change in Fe dopant vol%.In the present paper,maximum sensitivity of about 88.7%for the sample synthesized with 2 vol%Fe doped TiO_(2)and also the lowest response and recovery time of about 52 and 3 s were reported for the same sample.展开更多
The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are rest...The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.展开更多
Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(...Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(SEM),transmissionelectron microscope(TEM),high resolution transmission electron microscope(HRTEM),X-ray photoelectron spectroscopy(XPS)and UV-Vis were applied for characterization of the as-prepared samples.The formation mechanism of flower-like structure wasproposed based on the evolution of morphology as a function of hydrothermal time.Fe-doped into substitutional sites of BiVO4effectively improved the migration and separation of photogenerated carrier and enhanced the utilization of visible light.Flower-likeFe-doped BiVO4showed much higher visible-light-driven photocatalytic efficiency for degradation of methyl blue compared withthe pristine BiVO4.And the sample with a Fe/Bi mole ratio of2.5%showed the highest photocatalytic efficiency.展开更多
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i...Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.展开更多
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p...Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.展开更多
An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and r...An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and recyclable ability in the ketalization of glycerol to Solketal with acetone at 318 K has been developed. Our study demonstrated that the structure of Fe (less agglomerated iron species vs. FeO clusters) can be tuned by changing Fe loading in the PKU-1 material, which correlated well with experimental observations. Furthermore, the surface boron sites were promoted by iron loading and behaved as Lewis-acid sites to facilitate the reaction process of glycerol ketalization, while the Solketal selectivity was closely related with the structure of iron species in PKU-1, which was proved by kinetic studies, density function theory (DFT) calculations, and a series of spectroscopy studies. This investigation demonstrates that the surface B sites can play important roles in the reaction instead of being spectators.展开更多
YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thep...YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thepractical application of YBCO-coated conductors at hightemperatures and high magnetic fields. It is crucial todevelop YBCO-coated conductors with high critical currentdensity. In this paper, epitaxial, dense, smooth, andcrack-free Fe-doped YBCO films were prepared on aLaAlO3 single crystal substrate via a fluorine-free polymerassistedmetal organic deposition method. The effects ofthe dilute Fe doping on microstructure and superconductingcharacter of YBCO films were investigated. The criticaltemperature for superconducting of the Fe-dopedYBCO films decreases slightly. However, the in-fieldcritical current density of YBCO films improves with diluteFe doping of amounts less than x = 0.005, compared to thepure YBCO film. Therefore, the current carrying capabilityof YBCO film can improve by doping with appropriateamounts of Fe. This means that dilute Fe doping in YBCOfilms may be a feasible way to prepare high-performancecoated conductors.展开更多
Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The resu...Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.展开更多
Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, abov...Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, above which impurity phase can be observed. The transmittance of the samples with x=0, 0.05, 0.1 and 0.2 are above 80% in the visible region while the transimittance of the glass is 90%. The transmittance curves slightly red-shifts as x increasing. All of the samples except x=0 are ferromagnetic at room temperature. The highest saturation magnetization moment is reached in the sample x=0.2 with 330 emu/cm3, and the coercive force is 169 Oe which is also the largest in our samples. The results indicate that the addition of Fe ions could tune the structure, the ferromagnetism and optical property in the In2O3 matrix.展开更多
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.展开更多
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v...The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.展开更多
The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). the effects o...The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). the effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the (111) face of diamond is dominated and the (100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared (FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S-C and S-C-O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization.展开更多
The effect of Fe-doping on the magnetic properties of the ABO3-type perovskite cobaltites La0.7Ba0.3CoO3(0≤ y≤0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (Tc)...The effect of Fe-doping on the magnetic properties of the ABO3-type perovskite cobaltites La0.7Ba0.3CoO3(0≤ y≤0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (Tc) and the magnetization (M) are greatly suppressed for y ≤0.30 samples, while a distinct increase in Tc for the y=0.40 sample is observed. With the further increase of Fe concentration, Tc increases monotonically. Griffiths-like phases in 0.40≤y ≤0.60 samples are confirmed. The formation of the Griffiths-like phase is ascribed to B-site disordering induced isolation of ferromagnetic (FM) clusters above Tc.展开更多
Iron(Fe)was successfully doped in CuWO4 photoanode films with a combined liquid-phase spin-coating method via the dopant sources of Fe(NO3)3,FeSO4 and FeCl3.The microstructure of the prepared films was characterized b...Iron(Fe)was successfully doped in CuWO4 photoanode films with a combined liquid-phase spin-coating method via the dopant sources of Fe(NO3)3,FeSO4 and FeCl3.The microstructure of the prepared films was characterized by x-ray diffraction,scanning electron microscopy,and atomic force microscopy.The light absorption and photoelectric conversion properties were evaluated by the UV-visible absorption spectra and monochromatic incident photon-to-electron conversion efficiency.The chemical composition and element combination of the samples were examined by x-ray photoelectron spectroscopy.A linear sweep voltammetric and stability test(I-t)were performed with an electrochemical workstation.The results show that the samples are uniform with a thickness of approximately 800 nm and that the photoelectrochemical performance of the doped films is heavily dependent on the Fe source and dopant concentration.Upon optimizing the doping conditions of Fe(NO3)3 and the optimal source,the photocurrent density in the Fe-doped CuWO4 photoanode film is improved by 78%from 0.267 mA/cm2 to 0.476 mA/cm2 at 1.23 V vs reversible hydrogen electrode.The underlying causes are discussed.展开更多
Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate h...Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.展开更多
LiFe Mn1-xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance o...LiFe Mn1-xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance of LiFexMnt xPOJC was investigated. The experimental results show that the Fe2+ substitution for Mn2+ will lead to crystal lattice shrinkage of LiFe Mn1-xPO4/C particles due to the smaller ionic radii of Fe2+ In the investigated Fe doping range (x = 0 to 0.7), LiFe Mn1-xPO4/C (x = 0.4) composites exhibited a maximum discharge capacity of 148.8 mAh/g at 0.1 C while LiF%MnI_xPO4/C (x = 0.7) composite showed the best cycle capability with a capacity retention ratio of 99.0% after 30 cycles at 0.2 C. On the contrary, the LiFe Mnl-xPO4/ C (x = 0.5) composite performed better trade-off on discharge capacity and capacity retention ratio, 127.2 mAh/ g and 94.7% after the first 30 cycles at 0.2 C, respectively, which is more preferred for practical applications.展开更多
The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the in...The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the insulator-metal transition temperature (T_(IM)) shifts to lower temperature. If the doping content is small, the transport properties manifest metallic characteristics in the temperature range of T<T_(IM), while they will obey a thermal activation model in the temperature range of T>T_(IM). Such a behavior may be attributed to the Fe^(3+)-doping and possible Mn ions scattering to electrons. The Fe^(3+) doping may lead to the formation of Fe^(3+)-O^(2-)-Mn^(4+) channels, which could terminate the double exchange Mn^(3+)-O^(2-)-Mn^(4+) channels. The antiferromagnetic clusters of Fe ions may induce the Mn ions to scetter to the electrons.展开更多
The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21...The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21 5Ti 3Fe alloy as compared with Co 3Ti (Co 23Ti) alloy. The surface reaction of Co 21 5Ti 3Fe alloy with water vapor saturates at exposure of 2×10 -3 Pa·s, but it does not saturate even at 0 1 Pa·s exposure for Co 3Ti alloy without Fe. The results also indicated that the kinetic of the surface reaction of Co 21 5Ti 3Fe with water vapor is much smaller than that of Co 3Ti at the same exposure. All the above results illustrate that the suppression of environmental embrittlement by addition of Fe to Co 3Ti alloy is attributed to its reduction of the surface reaction kinetics with water vapor.展开更多
BiOX(X=Cl,I,Br)has attracted intensive interest as a photocatalyst for environmental remediation,but its limited pho-tocatalytic activity versus visible light irradiation restricts its practical application.Herein,a F...BiOX(X=Cl,I,Br)has attracted intensive interest as a photocatalyst for environmental remediation,but its limited pho-tocatalytic activity versus visible light irradiation restricts its practical application.Herein,a Fe^(3+)-doped BiOCl_(x)I_(1-x)solid solution(Fe-BiOCl_(x)I_(1-x))was synthesized in situ on an amidoxime-functionalized fibrous support via a one-pot solvothermal approach.Comprehensive characterization and DFT calculations indicate that the robust chelated interaction between ami-doxime groups and Fe^(3+)greatly boosts the crystal growth of nanosized Fe-BiOCl_(x)I_(1–x)on the fibrous surface,simultaneously tunes its electronic structure for improved light harvesting and oxygen vacancy creation,and enables the fibrous support to act as an electron sink for efficient charge separation.These synergistic qualities result in high photocatalytic activity for the degradation of organic contaminants,which outperforms that obtained for unsupported Fe-BiOCl_(x)I_(1-x)and other fibrous samples by several times.Our findings highlight the importance of functionalized support design for the development of efficient BiOX photocatalysts under visible light irradiation.展开更多
基金Shanghai Education Committee Science Development Foundation.
文摘The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.
文摘In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size,texture coefficient,microstrain,dislocation densities etc.were evaluated from the X ray diffratometry(XRD)data.XRD data revealed a polycrystalline anatase TiO_(2)phase for sample synthesized up to 2 vol%and mixed anatase and rutile crystalline phase for sample synthesized at 4 vol%Fe doped TiO_(2).The crystalline size was observed to decrease with increase in Fe dopant vol%and also other structural parameters changes with Fe dopant percentage.In the present work,electrical resistance was observed to decrease with a rise in Fe dopant vol%and temperature of the sample.Thermal properties like temperature coefficient of resistance and activation energy also showed strong correlation with Fe dopant vol%.Humidity sensing properties of the synthesized sample altered with a change in Fe dopant vol%.In the present paper,maximum sensitivity of about 88.7%for the sample synthesized with 2 vol%Fe doped TiO_(2)and also the lowest response and recovery time of about 52 and 3 s were reported for the same sample.
文摘The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR.
基金Project(51102025)supported by the National Natural Science Foundation of ChinaProject(14JJ7040)supported by Natural Science Foundation of Hunan Province,ChinaProject(2014GH561172)supported by China Torch Program
文摘Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(SEM),transmissionelectron microscope(TEM),high resolution transmission electron microscope(HRTEM),X-ray photoelectron spectroscopy(XPS)and UV-Vis were applied for characterization of the as-prepared samples.The formation mechanism of flower-like structure wasproposed based on the evolution of morphology as a function of hydrothermal time.Fe-doped into substitutional sites of BiVO4effectively improved the migration and separation of photogenerated carrier and enhanced the utilization of visible light.Flower-likeFe-doped BiVO4showed much higher visible-light-driven photocatalytic efficiency for degradation of methyl blue compared withthe pristine BiVO4.And the sample with a Fe/Bi mole ratio of2.5%showed the highest photocatalytic efficiency.
基金supported by the National Natural Science Foundation of China(22171266)the FJIRSM&IUE Joint Research Fund(RHZX-2019-002)+2 种基金the STS Project(KFJ-STS-QYZD-2021-09002)the National Key Basic Research Program of China(2017YFA0403402)the Project of the National Natural Science Foundation of China(U1932119)。
文摘Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.
基金supported by the National Basic Research Program of China (973 Program,2015CB932303)the National Natural Science Founda-tion of China (21373175,21621091)~~
文摘Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.
基金financially supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJQN202000823 and KJZD-K201900802)Research project of Chongqing Technology and Business University(No. 1956058)+2 种基金Scientific Platform ProjectMinistry of Education (No. fykf201905)US Department of Energy Office of Basic Energy Sciences,Division of Chemical,Biological and Geological Sciences (No. DE-FG02-86ER13622.A000) for support of this research。
文摘An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and recyclable ability in the ketalization of glycerol to Solketal with acetone at 318 K has been developed. Our study demonstrated that the structure of Fe (less agglomerated iron species vs. FeO clusters) can be tuned by changing Fe loading in the PKU-1 material, which correlated well with experimental observations. Furthermore, the surface boron sites were promoted by iron loading and behaved as Lewis-acid sites to facilitate the reaction process of glycerol ketalization, while the Solketal selectivity was closely related with the structure of iron species in PKU-1, which was proved by kinetic studies, density function theory (DFT) calculations, and a series of spectroscopy studies. This investigation demonstrates that the surface B sites can play important roles in the reaction instead of being spectators.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (200806131034, 200806130023)Natural Science Foundation of China under Contract Nos. 50672078 and 50872116+6 种基金the National Science Fund for Distinguished Young Scholars under Contract No. 50588201, and 51102199the National High-Tech Program of China (863 Program) under Contract No. 2007AA03Z203the PCSIRT of the Ministry of Education of China (IRT0751)Research and Development Foundation of Southwest Jiao tong University under Grant Contract No. 2004A02Fundamental Research Funds for the Central Universities (SWJTU12CX019)the National Natural Science Foundation (51202202)Fundamental Research Funds for the Central Universities of China (SWJTU2682013CX005)
文摘YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thepractical application of YBCO-coated conductors at hightemperatures and high magnetic fields. It is crucial todevelop YBCO-coated conductors with high critical currentdensity. In this paper, epitaxial, dense, smooth, andcrack-free Fe-doped YBCO films were prepared on aLaAlO3 single crystal substrate via a fluorine-free polymerassistedmetal organic deposition method. The effects ofthe dilute Fe doping on microstructure and superconductingcharacter of YBCO films were investigated. The criticaltemperature for superconducting of the Fe-dopedYBCO films decreases slightly. However, the in-fieldcritical current density of YBCO films improves with diluteFe doping of amounts less than x = 0.005, compared to thepure YBCO film. Therefore, the current carrying capabilityof YBCO film can improve by doping with appropriateamounts of Fe. This means that dilute Fe doping in YBCOfilms may be a feasible way to prepare high-performancecoated conductors.
基金supported by the Yunnan Fundamental Research Projects(No.202301BC070001-001)funded by the Yunnan Provincial Department of Science and Technologythe Yunnan Provincial Science and Technology Plan Project(No.202005AF150045)+1 种基金the Jiangsu Province Industry-University-Research Cooperation Project(No.BY2022832)funded by the Jiangsu Provincial Department of Science and Technologythe National Natural Science Foundation of China(No.52275339).
文摘Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.
基金Funded by the Program for New Century Excellent Talents in University (NCET-05-0659)
文摘Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, above which impurity phase can be observed. The transmittance of the samples with x=0, 0.05, 0.1 and 0.2 are above 80% in the visible region while the transimittance of the glass is 90%. The transmittance curves slightly red-shifts as x increasing. All of the samples except x=0 are ferromagnetic at room temperature. The highest saturation magnetization moment is reached in the sample x=0.2 with 330 emu/cm3, and the coercive force is 169 Oe which is also the largest in our samples. The results indicate that the addition of Fe ions could tune the structure, the ferromagnetism and optical property in the In2O3 matrix.
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.
基金supported by Higher Education Commission of Pakistan, National Basic Research Program of China (2010CB934602)National Science Foundation of China (51171007 and 51271009)
文摘The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.
基金Project supported by the National Natural Science Foundation of China(Grant No.51772120)the Project for Key Science and Technology Research of Henan Province,China(Grant Nos.162102210275 and 172102210283)+1 种基金the Key Scientific Research Project in Colleges and Universities of Henan Province,China(Grant Nos.18A430017 and 17A430020)the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University,China(Grant No.2016YJD03)
文摘The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). the effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the (111) face of diamond is dominated and the (100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared (FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S-C and S-C-O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization.
基金Project supported by the National Basic Research Program of China (Grant No 2009CB929201)the National Natural Science Foundation of China (Grant No 10774179)
文摘The effect of Fe-doping on the magnetic properties of the ABO3-type perovskite cobaltites La0.7Ba0.3CoO3(0≤ y≤0.80) is reported. With no apparent structural change in any doped sample, the Curie temperature (Tc) and the magnetization (M) are greatly suppressed for y ≤0.30 samples, while a distinct increase in Tc for the y=0.40 sample is observed. With the further increase of Fe concentration, Tc increases monotonically. Griffiths-like phases in 0.40≤y ≤0.60 samples are confirmed. The formation of the Griffiths-like phase is ascribed to B-site disordering induced isolation of ferromagnetic (FM) clusters above Tc.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204238)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM1030).
文摘Iron(Fe)was successfully doped in CuWO4 photoanode films with a combined liquid-phase spin-coating method via the dopant sources of Fe(NO3)3,FeSO4 and FeCl3.The microstructure of the prepared films was characterized by x-ray diffraction,scanning electron microscopy,and atomic force microscopy.The light absorption and photoelectric conversion properties were evaluated by the UV-visible absorption spectra and monochromatic incident photon-to-electron conversion efficiency.The chemical composition and element combination of the samples were examined by x-ray photoelectron spectroscopy.A linear sweep voltammetric and stability test(I-t)were performed with an electrochemical workstation.The results show that the samples are uniform with a thickness of approximately 800 nm and that the photoelectrochemical performance of the doped films is heavily dependent on the Fe source and dopant concentration.Upon optimizing the doping conditions of Fe(NO3)3 and the optimal source,the photocurrent density in the Fe-doped CuWO4 photoanode film is improved by 78%from 0.267 mA/cm2 to 0.476 mA/cm2 at 1.23 V vs reversible hydrogen electrode.The underlying causes are discussed.
基金Zhejiang Provincial Natural Science Foundation of China,Grant/Award Number:LQ20B010002。
文摘Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.
基金Funded by the Applied Basic Research Special Program of Guangzhou City(No.7411793079907)the Guangdong Province Science&Technology Bureau(Nos.2012B091100351,2012B050300004)the National Natural Science Foundation of China(No.21376035)
文摘LiFe Mn1-xPO4/C composites were synthesized by a solid-state reaction route using phenolic resin as both reducing agent and carbon source. The effect of Fe doping on the crystallinity and electrochemical performance of LiFexMnt xPOJC was investigated. The experimental results show that the Fe2+ substitution for Mn2+ will lead to crystal lattice shrinkage of LiFe Mn1-xPO4/C particles due to the smaller ionic radii of Fe2+ In the investigated Fe doping range (x = 0 to 0.7), LiFe Mn1-xPO4/C (x = 0.4) composites exhibited a maximum discharge capacity of 148.8 mAh/g at 0.1 C while LiF%MnI_xPO4/C (x = 0.7) composite showed the best cycle capability with a capacity retention ratio of 99.0% after 30 cycles at 0.2 C. On the contrary, the LiFe Mnl-xPO4/ C (x = 0.5) composite performed better trade-off on discharge capacity and capacity retention ratio, 127.2 mAh/ g and 94.7% after the first 30 cycles at 0.2 C, respectively, which is more preferred for practical applications.
文摘The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the insulator-metal transition temperature (T_(IM)) shifts to lower temperature. If the doping content is small, the transport properties manifest metallic characteristics in the temperature range of T<T_(IM), while they will obey a thermal activation model in the temperature range of T>T_(IM). Such a behavior may be attributed to the Fe^(3+)-doping and possible Mn ions scattering to electrons. The Fe^(3+) doping may lead to the formation of Fe^(3+)-O^(2-)-Mn^(4+) channels, which could terminate the double exchange Mn^(3+)-O^(2-)-Mn^(4+) channels. The antiferromagnetic clusters of Fe ions may induce the Mn ions to scetter to the electrons.
文摘The surface reaction of Co 3Ti alloys (with and without Fe) with water vapor was investigated by using Auger electron spectroscopy (AES). The results showed that the rate of the surface reaction is much lower in Co 21 5Ti 3Fe alloy as compared with Co 3Ti (Co 23Ti) alloy. The surface reaction of Co 21 5Ti 3Fe alloy with water vapor saturates at exposure of 2×10 -3 Pa·s, but it does not saturate even at 0 1 Pa·s exposure for Co 3Ti alloy without Fe. The results also indicated that the kinetic of the surface reaction of Co 21 5Ti 3Fe with water vapor is much smaller than that of Co 3Ti at the same exposure. All the above results illustrate that the suppression of environmental embrittlement by addition of Fe to Co 3Ti alloy is attributed to its reduction of the surface reaction kinetics with water vapor.
基金supported by the National Natural Science Foundation of China(No.5200319221806121)+1 种基金Special Fund Project for Technology Innovation of Tianjin City(20YDTPJC00920)Natural Science Foundation of Tianjin City(15JCQNJC06300).
文摘BiOX(X=Cl,I,Br)has attracted intensive interest as a photocatalyst for environmental remediation,but its limited pho-tocatalytic activity versus visible light irradiation restricts its practical application.Herein,a Fe^(3+)-doped BiOCl_(x)I_(1-x)solid solution(Fe-BiOCl_(x)I_(1-x))was synthesized in situ on an amidoxime-functionalized fibrous support via a one-pot solvothermal approach.Comprehensive characterization and DFT calculations indicate that the robust chelated interaction between ami-doxime groups and Fe^(3+)greatly boosts the crystal growth of nanosized Fe-BiOCl_(x)I_(1–x)on the fibrous surface,simultaneously tunes its electronic structure for improved light harvesting and oxygen vacancy creation,and enables the fibrous support to act as an electron sink for efficient charge separation.These synergistic qualities result in high photocatalytic activity for the degradation of organic contaminants,which outperforms that obtained for unsupported Fe-BiOCl_(x)I_(1-x)and other fibrous samples by several times.Our findings highlight the importance of functionalized support design for the development of efficient BiOX photocatalysts under visible light irradiation.