期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of vacuum annealing on the characteristics of composite pellets containing DBSA-doped polyaniline and Fe nanoparticles
1
作者 Qing Wu Hong Qiu +1 位作者 Chun-ying Fang Kun Fang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期236-241,共6页
The DBSA-PANI-Fe composite powder with 50wt% of Fe nanoparticles was prepared by mechanically mixing the DBSA-doped polyaniline powder and Fe nanoparticles. The composite powder was compacted to pellets and the pellet... The DBSA-PANI-Fe composite powder with 50wt% of Fe nanoparticles was prepared by mechanically mixing the DBSA-doped polyaniline powder and Fe nanoparticles. The composite powder was compacted to pellets and the pellets were annealed in vacuum at 443,493,543, and 593 K for 60 and 120 min. The conductivity of the pellet increases markedly with increasing the annealing temperature up to 493 K, and then decreases with further increasing the annealing temperature. When the pellet was annealed at 493 K for 60 min, the increment of conductivity reaches a maximum value, and the conductivity is 2.6 times as large as that of the pellet unannealed. The conductivities of the pellets annealed under the conditions of 543 K/120 min, 593 K/60 min, and 593 K/120 min are lower than the conductivity of the pellet unannealed. For all the pellets, the variation in conductivity with temperature reveals that the charge transport mechanism can be considered to be 1-D variable-range-hopping (1-D VRH). The composite pellet shows a magnetic hysteresis loop independent of the annealing condition. The saturation magnetization is about 5.4×10^4 emu/kg. The saturation field and the coercivity are estimated to be 4.38×10^5 and 3.06×10^4 A/m, respectively. The crystalline structure ofFe nanoparticles in the composites does not change with the annealing condition. The annealing condition cannot destroy the polymer backbones. 展开更多
关键词 doped polyaniline dodecylbenzene sulfonic acid (DBSA) fe nanoparticles vacuum annealing STRUCTURE CONDUCTIVITY MAGNETIZATION
下载PDF
Effect of Ni on Removal of Pentachlorophenol with Fe Nanoparticles
2
作者 Cheng Rong Li Guanqing +3 位作者 Shi Lei Wang Xuejun Ma Zhong Liu Peng 《Meteorological and Environmental Research》 CAS 2014年第7期41-44,共4页
Chlorinated phenols are a kind of environmental priority pollutants that attract much attention. The effect of Ni on the removal of pentachlorophenol (PCP) with Fe nanoparticles was investigated in this study. Fe na... Chlorinated phenols are a kind of environmental priority pollutants that attract much attention. The effect of Ni on the removal of pentachlorophenol (PCP) with Fe nanoparticles was investigated in this study. Fe nanoparticles and Ni submicron particles were synthesized using chemical reduction method and wet chemical techniques, respectively. And the concentrations of PCP and chloride ion in solutions were measured with and without Ni present. The results showed that the dechlorination of PCP was promoted in the presence of Ni particles, and the dechlorination efficiency was reduced along with the increase of Ni size. When the diameter of Ni particle was smaller than 300 nm, the removal efficiency of PCP was obviously increased in the initial 4 h, and then became the similar to that of the system with Fe only. When the diameter of Ni particle was between 400 nm and 1 μm, the removal efficiency of PCP was increased in the initial 1 h. Then the removal of PCP was inhibited, and the inhibition was increased with the increase of Ni size. Later, the removal efficiency was the similar in various systems. 展开更多
关键词 Pentachlorophenol (PCP) fe nanoparticles Ni submicron particles DECHLORINATION China
下载PDF
Irradiation induced elongation of Fe nanoparticles embedded in silica films
3
作者 E.A.Dawi T.Ommar +1 位作者 R.Ackermann A.A.Karar 《International Journal of Smart and Nano Materials》 SCIE EI 2020年第2期147-158,共12页
Irradiation with swift heavy ions causes the deformation of Ferric nanoparticles in direction of the ion beam.Fe nanoparticles with mean diameter of about 20 nm were prepared by gas flow sputtering and subsequently co... Irradiation with swift heavy ions causes the deformation of Ferric nanoparticles in direction of the ion beam.Fe nanoparticles with mean diameter of about 20 nm were prepared by gas flow sputtering and subsequently confined within silica films.Two silica films wherein two different densities of Fe nanoparticles are encapsulated were irradiated with 50 MeV Ag ions with fluences of few 1014 ions.cm^(-2) at 300 K and normal incidence.Transmission electron microscopy analysis shows that the spherical Fe nanoparticles are deformed into prolate nanorods aligned in direction of the incident ion beam.The depth distribution profiles of irradiated particles reveal the presence of a critical fluence above which the elongation kinetics becomes dependent on the nanoparticles density.Analysis indicates that for the lower density particles,a saturation length is reached under irradiation to fluence between 3-4×10^(14) ions.cm^(-2).However,for the higher density,collective growth into aligned nanowires is presumed to take place.Hysteresis curves of the saturation magnetization and coercivity indicate an increasing magnetic anisotropy,which can be correlated with the deformation of nanoparticles in the direction of the ion beam. 展开更多
关键词 Ion irradiation fe nanoparticles SILICA gas flow sputtering NANORODS MAGNETIZATION
原文传递
Size-dependent peroxidase-like catalytic activity of Fe_3O_4 nanoparticles 被引量:16
4
作者 Fang Fang Peng YU Zhang Ning Gu 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第6期730-733,共4页
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing ... Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed. 展开更多
关键词 fe3O4 nanoparticles Peroxidase-like catalytic activity ELECTROCHEMISTRY
下载PDF
Ammonia-treatment assisted fully encapsulation of Fe_2O_3 nanoparticles in mesoporous carbons as stable anodes for lithium ion batteries 被引量:4
5
作者 Fei Han Wen-Cui Li +1 位作者 Duo Li An-Hui Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期329-335,共7页
To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe203 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surf... To improve the initial coulombic efficiency and bulk density of ordered mesoporous carbons, active Fe203 nanoparticles were introduced into tubular mesopore channels of CMK-5 carbon, which possesses high specific surface area (〉1700 m2.g-1) and large pore volume (〉1.8 cm3-g-1). Fine Fe203 nanoparticles with sizes in the range of 5-7 nm were highly and homogenously encapsulated into CMK-5 matrix through ammonia-treatment and subsequent pyrolysis method. The Fe203 loading was carefully tailored and designed to warrant a high Fe203 content and adequate buffer space for improving the electrochemical performance. In particular, such Fe203 and mesoporous carbon composite with 47 wt% loading exhibits a considerably stable cycle performance (683 mAh.g-1 after 100 cycles, 99% capacity retention against that of the second cycle) as well as good rate capability. The fabrication strategy can effectively solve the drawback of single material, and achieve a high-performance lithium electrode material. 展开更多
关键词 ordered mesoporous carbon fe203 nanoparticle cycle stability lithium-ion anode
下载PDF
Large scale synthesis of FeS coated Fe nanoparticles as reusable magnetic photocatalysts 被引量:3
6
作者 He FENG Ping-Zhan SI Xiao-Fei XIAO Chen-Hao JIN Sen-Jiang YU Zheng-Fa LI Hong-Liang GE 《Frontiers of Materials Science》 SCIE CSCD 2013年第3期308-311,共4页
The FeS coated Fe nanoparticles were prepared by using high temperature reactions between the commercial Fe nanoparticles and the S powders in a sealed quartz tube. The simple method developed in this work is effectiv... The FeS coated Fe nanoparticles were prepared by using high temperature reactions between the commercial Fe nanoparticles and the S powders in a sealed quartz tube. The simple method developed in this work is effective for large scale synthesis of FeS/Fe nanoparticles with tunable shell/core structures, which can be obtained by controlling the atomic ratio of Fe to S. The structural, magnetic and photocatalytic properties of the nanoparticles were investigated systematically. The good photocatalytic performance originating from the FeS shell in degradation of methylene blue under visible light and the high saturation magnetization originating from the ferromagnetic Fe core make the FeS/Fe nanoparticles a good photocatalyst that can be collected and recycled easily with a magnet. An exchange bias up to tl mT induced in Fe by FeS was observed in the Fe/FeS nanoparticles with ferro/antiferromagnetic interfaces. The enhanced coercivi- ty up to 32 mT was ascribed to the size effect of Fe core. 展开更多
关键词 magnetic photocatalyst exchange bias feS coated fe nanoparticle
原文传递
Surface organic modification of Fe_3O_4 nanoparticles by silane-coupling agents 被引量:7
7
作者 CUI Sheng SHEN Xiaodong LIN Benlan 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期426-430,共5页
Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in org... Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution. 展开更多
关键词 fe3O4 nanoparticles organic modification silane-coupling agents
下载PDF
Synthesis and Characteristics of Fe_3C Nanoparticles Embedded in Amorphous Carbon Matrix 被引量:4
8
作者 YANG Kai-yu XU Wei +2 位作者 ZHANG Yu ZHENG Wei-tao WANG Xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第3期348-351,共4页
We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images ... We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images show the existence of nanometric dark grains(Fe3C) embedded in a light matrix(amorphous carbon) in the samples. X-ray photoelectron spectroscopy experiment exhibit that the chemical bonding state in the films corresponded to sp3/sp2 amorphous carbon, sp^3 C-N(287.3 eV) and C15 in Fe3C(283.5 eV). With increasing deposition time, the ratio of amorphous carbon increased. The magnetic measurements show that the value of in-lane coercivity increased with increasing carbon matrix concentration(from about 6.56× 10^3 A/m for film without carbon structures to approximately 2.77× 10^4 and 5.81 × 10^4 AJm for nanocomposite films at room temperature and 10 K, respectively). The values of saturation magnetization for the synthesized nanocomposites were lower than that of the bulk Fe3C ( 140 Am^2/kg). 展开更多
关键词 fe3C nanoparticle Amorphous carbon Plasma enhancement chemical vapor deposition(PECVD) Magnetic property
下载PDF
Surface Organic Modification of Fe_3O_4 Magnetic Nanoparticles 被引量:4
9
作者 CUI Sheng SHEN Xiaodong LIN Benlan JIANG Guodong ZHANG Weihua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期436-439,共4页
The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS ... The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained. 展开更多
关键词 fe3O4 nanoparticles KH570 surface organic modification chemical adsorb DISPERSIVITY
下载PDF
Fe_3O_4 Magnetic Nanoparticles Modified Electrode as a Sensor for Determination of Nimesulide 被引量:1
10
作者 ZHANG Jin-lei TAN Xue-cai +4 位作者 ZHAO Dan-dan TAN Sheng-wei LIU Li WANG Lin HUANG Zeng-wei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第4期566-569,共4页
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ... A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry. 展开更多
关键词 fe3O4 nanoparticle Modified electrode NIMESULIDE DETERMINATION Electrochemical behavior
下载PDF
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
11
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 fe3O4 magnetic nanoparticles MODIFICATION TRYPSIN IMMOBILIZATION L-DOPA DOPAMINE
下载PDF
Towards High-performance Lithium-Sulfur Batteries: the Modification of Polypropylene Separator by 3D Porous Carbon Structure Embedded with Fe3C/Fe Nanoparticles
12
作者 LIU Yusi ZHAO Xinghe +3 位作者 LI Sesi ZHANG Qiang WANG Kaixue CHEN Jiesheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第1期147-154,共8页
Lithium-sulfur(Li-S)batteries with high energy densities have received increasing attention.However,the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application,whi... Lithium-sulfur(Li-S)batteries with high energy densities have received increasing attention.However,the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application,which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion.To address this issue,a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe)was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP)separator.The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides,while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides.The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved.A large discharge capacity of 1481 mA∙h∙g-1 is achieved at 0.2 C(1 C=1675 mA/g),and a high capacity of 601 mA∙h∙g-1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C.This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides,good wettability to the electrolyte and high catalytic property. 展开更多
关键词 fe/fe3C nanoparticle Modified separator Electro-catalytic effect Shuttle effect Lithium-sulfur battery
原文传递
Synthesis and Characterization of Surface-modified Fe_3O_4 Super-paramagnetic Nanoparticles
13
作者 张占洁 马佳 +6 位作者 徐双兵 任精华 秦铀 黄晶 杨坤禹 张志平 伍钢 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第2期270-275,共6页
Aqueous dispersion and stability of Fe304 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe304 super-paramagnetic ... Aqueous dispersion and stability of Fe304 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe304 super-paramagnetic nanoparticles which were modified by three kinds of materials [DSPE-MPEG2000, TiO2 and poly acrylic acid (PAA)] and further detected their characteristics. Trans- mission electron microscopy (TEM) clearly showed sizes and morphology of the four kinds of nanopar- ticles. X-ray diffraction (XRD) proved successfully coating of the three kinds of nanoparticles and their structures were maintained. Vibrating sample magnetometer (VSM) verified that their magnetic proper- ties fitted for the super-paramagnetic function. More importantly, the particle size analysis indicated that Fe304@PAA had a better size distribution, biocompatibility, stability and dispersion than the other two kinds of nanoparticles. In addition, using CNE2 cells as a model, we found that all nanoparticles were nontoxic. Taken together, our data suggest that Fe304@PAA nanoaparticles are superior in the applica- tion of biomedical field among the four kinds ofFe304 nanoparticles in the future. 展开更多
关键词 fe304 super-paramagnetic nanoparticles surface modification BIOCOMPATIBILITY
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
14
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 fe acac in IS on of Controllable Synthesis and Magnetic Properties of Monodisperse fe3O4 nanoparticles
下载PDF
The Film-forming Behavior on the Interface between Air and Hydrosol of Fe_2O_3 Nanoparticles
15
作者 曹立新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期525-527,共3页
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy... The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope. 展开更多
关键词 FILM INTERFACE air and hydrosol fe2O3 nanoparticles
下载PDF
Determination of Anionic Surfactants in Environmental Water Samples Using Fluorescence Enhancement Method Based on Fe_3O_4@PAA-RB Fluorescent Nanoparticles
16
作者 RAO Tong-de 《Meteorological and Environmental Research》 2012年第5期25-27,共3页
[ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed ... [ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed a novel fluorescence enhancement method for the determi- nation of an anionic surfactant sodium dodecyl sulfate (SDS) through the gradual optimization of experiment conditions. [ Result] Under the opti- mum conditions, the extent of fluorescence enhancement is directly proportional to SDS concentration varying from 0.5 to 16.0 μmol/L, and the de- tection limit reaches 0.051 μmol/L. The relative standard deviation (RSD) for 4.0 μmol/L SDS is 3.3% ( n =6). The proposed method has been successfully applied to the determination of SDS in environmental water samples, with recovery of 96.3% -105.5%. E Conclusion] The novel fluo- rescence enhancement method is not only simple and rapid, but also has avoided using tedious solvent-extraction and toxic organic solvents. 展开更多
关键词 Fluorescence enhancement method fe3O4 @ PAA-RB fluorescent nanoparticles Sodium dodecyl sulfate (SDS) China
下载PDF
RhB Adsorption Performance of Magnetic Adsorbent Fe_3O_4/RGO Composite and Its Regeneration through A Fenton-like Reaction 被引量:11
17
作者 Yalin Qin Mingce Long +1 位作者 Beihui Tan Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2014年第2期125-135,共11页
Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechan... Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide(RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore,with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater. 展开更多
关键词 Magnetic adsorbent fe3O4 nanoparticles Reduced grapheme oxide fenton-likereaction REGENERATION
下载PDF
Controlling the Properties of Solvent-free Fe_3O_4 Nanofluids by Corona Structure 被引量:2
18
作者 Yumo Tan Yaping Zheng +1 位作者 Nan Wang Aibo Zhang 《Nano-Micro Letters》 SCIE EI CAS 2012年第4期208-214,共7页
We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nano... We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties. 展开更多
关键词 Corona structure fe3O4 nanoparticles Liquid-like behavior Solvent-free nanofluids
下载PDF
Gap-plasmon of Fe3O4@Ag Core-shell Nanostructures for Highly Enhanced Fluorescence Detection of Rhodamine B 被引量:4
19
作者 王运佳 俎喜红 +2 位作者 易国斌 LUO Hongsheng HUANG Hailiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期264-271,共8页
A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized... A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane(MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance(SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon(LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10^(-7) mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works. 展开更多
关键词 gap-plasmon self-assembled fe3O4@Ag nanoparticles core-shell fluorescence enhancement
下载PDF
Synthesis of Magnetically Modified Fe-Al Pillared Bentonite and Heterogeneous Fenton-like Degradation of Orange II 被引量:2
20
作者 陈坤 WANG Guanghua +5 位作者 李文兵 WAN Dong HU Qin LU Lulu WEI Xiaobi CHENG Zhengzai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期302-306,共5页
Magnetically modified Fe-Al pillared bentonite(Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction(XRD), Brunauer-EmmettTeller(BET), Fourier transfo... Magnetically modified Fe-Al pillared bentonite(Fe3O4/ Fe-Al-Bent) was prepared via chemical co-precipitation method and characterized by powder X-ray diffraction(XRD), Brunauer-EmmettTeller(BET), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous catalysts in the presence of H2O2. The experimental result indicated that the synthetic materials had a high catalytic activity and good reusability. 展开更多
关键词 fe3O4 nanoparticles pillared bentonite heterogeneous fenton-like Orange II
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部