The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The...The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.展开更多
The influence of Fe2O3 impurity on the crystalline structure of cordierite synthesized from waste aluminum slag is discussed. XRD and SEM techniques were employed to characterize the crystalline structure and micros...The influence of Fe2O3 impurity on the crystalline structure of cordierite synthesized from waste aluminum slag is discussed. XRD and SEM techniques were employed to characterize the crystalline structure and microstructure of each specimen. Philips X’pert plus software was used to determine the lattice parameters of each specimen. The results show that the Fe2O3 content of 0.8~1.6wt% is beneficial to the formation of cordierite, with the cordierite amount reaching 90wt%. So 0.8~1.6wt% is considered as the allowable Fe2O3 content in the specimens and 0.8wt% is determined to be the best after overall analysis. Plus software analysis shows that the cordierite in each specimen has the same symmetrical hexagonal structure as the single crystal, and the lattice parameters as well as the lattice dimensions change slightly.展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz...A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.展开更多
A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in...A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It...Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It is found that there is a metal semiconductor interaction (MScI) in the Ni Ce catalyst, and the effect of MScI on the carbon deposition of CH 4 decomposition is opposite to that of C 2H 4. A novel model of carbon deposition of CH 4 or C 2H 4 decomposition was proposed.展开更多
In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation me...In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.展开更多
Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal lo...Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.展开更多
Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst...Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.展开更多
This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using ...This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.展开更多
MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was ev...MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.展开更多
基金Supported by the National Natural Science Foundation of China (20821004 20736001 21076008) the Research Fund for the Doctoral Program of Higher Education of China (2090010110002)
文摘The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.
基金This work was supported by the '863' Project (2003AA322020)
文摘The influence of Fe2O3 impurity on the crystalline structure of cordierite synthesized from waste aluminum slag is discussed. XRD and SEM techniques were employed to characterize the crystalline structure and microstructure of each specimen. Philips X’pert plus software was used to determine the lattice parameters of each specimen. The results show that the Fe2O3 content of 0.8~1.6wt% is beneficial to the formation of cordierite, with the cordierite amount reaching 90wt%. So 0.8~1.6wt% is considered as the allowable Fe2O3 content in the specimens and 0.8wt% is determined to be the best after overall analysis. Plus software analysis shows that the cordierite in each specimen has the same symmetrical hexagonal structure as the single crystal, and the lattice parameters as well as the lattice dimensions change slightly.
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
基金The financial support from the National Natural Science Foundation of China (20590361)the National Outstanding Young Scientists Foundation of China (20625620)
文摘A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.
基金Financial supports from the NSFC-DFG (21761132006),NSFC (21773108)fundamental research funds for central universities are acknowledged
文摘A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
文摘Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It is found that there is a metal semiconductor interaction (MScI) in the Ni Ce catalyst, and the effect of MScI on the carbon deposition of CH 4 decomposition is opposite to that of C 2H 4. A novel model of carbon deposition of CH 4 or C 2H 4 decomposition was proposed.
基金The National Basic Research Program (973) of China (No. 2004CB418505) the Foundation for Excellent Youth of HeilongjiangProvince
文摘In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.
基金Project supported by the National Natural Science Key Foundation of China (20333030)
文摘Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.
文摘Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.
文摘This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.
文摘MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.