Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron micros...Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of qu...Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.展开更多
Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and exten...Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe展开更多
基金Natural Science Foundation of China(No.51871244)Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX20200172)Fundamental Research Funds for the Central Universities of Central South University,China(No.1053320190103)。
基金supported by the Natural Science Foundation of China (91545115,21473145,and 21403178)the Postgraduate Basic Innovative Research Program of Xiamen University (201412G001)the Program for Innovative Research Team in Chinese Universities (no.IRT_14R31)
文摘Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘Elemental powders of Cu and Fe were ball milled for various time durations up to 100 h. The various stages of forced alloying by ball milling, leading to instability of elemental crystalline phases and formation of quasicrystalline phases were monitored using X-ray diffraction. Diffusion of Fe into the Cu matrix is proposed as the cause which triggers the instability of crystalline phases and leads to the formation of quasicrystalline phases after 10 h of milling. Milling for 100 h resulted in two different quasicrystalline phases with different lattice constants. Role of the nanocrystalline microstructure as an important criterion for the destabilisation of crystalline phases is explained. It is suggested that the formation of nanocrystalline microstructure and their subsequent transformation into quasicrystalline phases may be associated with a continuous increase in the disclination content of the system, which had formed as a result of continued milling and mechanical deformation.
文摘Highly supersaturated nanocrystalline fcc Fe60Cu40 alloy has been prepared by mechanical alloying of elemental powders. The phase transformation is monitored by X-ray diffraction (XRD),Mossbauer spectroscopy and extended X-ray absorption fine structure (EXAFS). The powder obtained after milling is of single fcc structure with grain size of nanometer order. The Mossbauer spectra of the milled powder can be fitted by two subspectra whose hyperfine magnetic fields are 16 MA/m and 20 MA/m while that of pure Fe disappeared. EXAFS results show that the radial structure function (RSF) of Fe K-edge changed drastically and finally became similar to that of reference Cu K-edge, while that of Cu K-edge nearly keeps unchanged in the process of milling. These imply that bcc Fe really transforms to fcc structure and alloying between Fe and Cu occurs truly on an atomic scale. EXAFS results indicate that iron atoms tend to segregate at the boundaries and Cu atoms are rich in the fcc lattice. Annealing experiments show that the Fe atoms at the interfaces are easy to cluster to α-Fe at a lower temperature, whereas the iron atoms in the lattice will form γ-Fe first at temperature above 350℃, and then transform to bcc Fe