期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
High efficient oxygen reduction performance of Fe/Fe3C nanoparticles in situ encapsulated in nitrogen-doped carbon via a novel microwave-assisted carbon bath method 被引量:1
1
作者 Mincong Liu Xue Yin +7 位作者 Xuhong Guo Libing Hu Huifang Yuan Gang Wang Fu Wang Long Chen Lili Zhang Feng Yu 《Nano Materials Science》 CAS 2019年第2期131-136,共6页
Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car... Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too. 展开更多
关键词 fe/fe3c nanoparticles Prussian blue Microwave cARBON BATH METHOD Oxygen reduction reaction
下载PDF
MOFs衍生多孔TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料的制备及其光催化性能 被引量:1
2
作者 谢倩祎 程爱华 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期47-55,共9页
将TiO_(2)加入NH_(2)-MIL-101(Fe)前驱体中,采用溶剂热法制备TiO_(2)/NH_(2)-MIL-101(Fe),进一步经高温热处理得到TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料(TiO_(2)/C、N-Fe_(2)O_(3))。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、光电子能... 将TiO_(2)加入NH_(2)-MIL-101(Fe)前驱体中,采用溶剂热法制备TiO_(2)/NH_(2)-MIL-101(Fe),进一步经高温热处理得到TiO_(2)/C、N掺杂Fe_(2)O_(3)复合材料(TiO_(2)/C、N-Fe_(2)O_(3))。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、光电子能谱(XPS)、紫外-可见分光漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对所得样品的晶体结构、形貌特征、组成及光谱特性进行表征。在模拟太阳光照射下对罗丹明B(RhB)溶液进行降解,评价其光催化活性。结果表明,C、N均匀掺杂在Fe_(2)O_(3)中,TiO_(2)复合C、N掺杂Fe_(2)O_(3)后禁带宽度减小,模拟太阳光照射2.5 h后,在0.1 g/L TiO_(2)/C、N-Fe_(2)O_(3)复合材料的光催化作用下,10 mg/L罗丹明B的去除率达到95%,速率常速为0.0192 min^(-1),效果较TiO_(2)和C、N-Fe_(2)O_(3)有明显提高。所得复合材料稳定性好、可重复利用。MOFs衍生多孔C、N掺杂Fe_(2)O_(3)与TiO_(2)的复合缩短了带隙,强化了空穴与电子的分离从而提高可见光催化活性。 展开更多
关键词 fe基-MOFs 光催化 TiO_(2)/c、N掺杂fe_(2)O_(3) 罗丹明B
下载PDF
Size-dependent peroxidase-like catalytic activity of Fe_3O_4 nanoparticles 被引量:16
3
作者 Fang Fang Peng YU Zhang Ning Gu 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第6期730-733,共4页
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing ... Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed. 展开更多
关键词 fe3O4 nanoparticles Peroxidase-like catalytic activity ELEcTROcHEMISTRY
下载PDF
Surface organic modification of Fe_3O_4 nanoparticles by silane-coupling agents 被引量:7
4
作者 CUI Sheng SHEN Xiaodong LIN Benlan 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期426-430,共5页
Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in org... Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution. 展开更多
关键词 fe3O4 nanoparticles organic modification silane-coupling agents
下载PDF
Synthesis and Characteristics of Fe_3C Nanoparticles Embedded in Amorphous Carbon Matrix 被引量:4
5
作者 YANG Kai-yu XU Wei +2 位作者 ZHANG Yu ZHENG Wei-tao WANG Xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第3期348-351,共4页
We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images ... We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images show the existence of nanometric dark grains(Fe3C) embedded in a light matrix(amorphous carbon) in the samples. X-ray photoelectron spectroscopy experiment exhibit that the chemical bonding state in the films corresponded to sp3/sp2 amorphous carbon, sp^3 C-N(287.3 eV) and C15 in Fe3C(283.5 eV). With increasing deposition time, the ratio of amorphous carbon increased. The magnetic measurements show that the value of in-lane coercivity increased with increasing carbon matrix concentration(from about 6.56× 10^3 A/m for film without carbon structures to approximately 2.77× 10^4 and 5.81 × 10^4 AJm for nanocomposite films at room temperature and 10 K, respectively). The values of saturation magnetization for the synthesized nanocomposites were lower than that of the bulk Fe3C ( 140 Am^2/kg). 展开更多
关键词 fe3c nanoparticle Amorphous carbon Plasma enhancement chemical vapor deposition(PEcVD) Magnetic property
下载PDF
Surface Organic Modification of Fe_3O_4 Magnetic Nanoparticles 被引量:4
6
作者 CUI Sheng SHEN Xiaodong LIN Benlan JIANG Guodong ZHANG Weihua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期436-439,共4页
The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS ... The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained. 展开更多
关键词 fe3O4 nanoparticles KH570 surface organic modification chemical adsorb DISPERSIVITY
下载PDF
Fe3O4 nanoparticles impregnated eggshell as a novel catalyst for enhanced biodiesel production 被引量:2
7
作者 Ch.Chingakham Asha David V.Sajith 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第11期2835-2843,共9页
Biodiesel is a green fuel which can replace diesel while addressing various issues such as scarcity of hydrocarbon fuels and environmental pollution to an extent. The high production cost of biodiesel and the recovery... Biodiesel is a green fuel which can replace diesel while addressing various issues such as scarcity of hydrocarbon fuels and environmental pollution to an extent. The high production cost of biodiesel and the recovery of the catalyst after the transesterification process are the major challenges to be addressed in biodiesel production. In the present work, a cheap and promising solid base oxide catalyst was synthesized from chicken eggshell by calcination at 900 ℃ forming catalyst eggshells(CES) and was impregnated with the nanomagnetic material(Fe3O4) to obtain Fe3O4 loaded catalytic eggshell(CES–Fe3O4). Fe3O4 nanomaterials were synthesized by co-precipitation method and were loaded in catalytic eggshell by sonication, for better recovery of the catalyst after transesterification process. CES–Fe3O4 material was characterized by Thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, a vibrating-sample magnetometer, Brunauer-Emmett-Teller, Dynamic light scattering, and Scanning electron microscopy. Biodiesel was synthesized by transesterification of Pongamia pinnata raw oil with 1:12 oil to methanol molar ratio and 2 wt% catalyst loading for 2 h at a temperature of 65 ℃ and yields were compared. The reusability of the catalyst was studied by the transesterification of the raw oil and its catalytic activity was found to be retained up to 7 cycles with a yield of 98%. 展开更多
关键词 cATALYST BIODIESEL nanoparticles fe3O4 IMPREGNATION TRANSESTERIFIcATION
下载PDF
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
8
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 fe3O4 magnetic nanoparticles MODIFIcATION TRYPSIN IMMOBILIZATION L-DOPA DOPAMINE
下载PDF
Fe_3O_4 Magnetic Nanoparticles Modified Electrode as a Sensor for Determination of Nimesulide 被引量:1
9
作者 ZHANG Jin-lei TAN Xue-cai +4 位作者 ZHAO Dan-dan TAN Sheng-wei LIU Li WANG Lin HUANG Zeng-wei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第4期566-569,共4页
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ... A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry. 展开更多
关键词 fe3O4 nanoparticle Modified electrode NIMESULIDE DETERMINATION Electrochemical behavior
下载PDF
Effect of Nanostructures Addition and Enhancement of Poly (Vinylidene Difluoride) (PVDF) Energy Harvesting
10
作者 Omar Peña-Oliveras Brenda Javier-Boodhan +1 位作者 Anthony La Santa Juan Gonzalez-Sanchez 《Materials Sciences and Applications》 2024年第7期228-244,共17页
With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive ... With concerns in energy crisis and global warming, researchers are actively investigating alternative energy renewable solutions. Among the various methods, piezoelectric transduction stands out due to its impressive electromechanical coupling factor and coefficient. As a result, piezoelectric energy harvesting has garnered significant attention from the scientific community. In this study, we explored methods to enhance the piezoelectric properties of polyvinylidene fluoride (PVDF) through two distinct approaches. The first approach involved applying external high voltages at various stages during the mixture reaction. The goal was to determine whether this voltage application could alter or enhance PVDF’s piezoelectric conformation by improving the alignment of polarized dipoles. In the second part of our study, we investigated the effects of incorporating various nanostructures (including Iron Oxide, Magnesium Oxide, and Zinc Oxide) into PVDF. To analyze changes in PVDF’s crystalline structure, we utilized Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) techniques. Additionally, we measured the electric polarization of samples using a Precision LC Meter and examined the morphology of nanofibers through Scanning Electron Microscopy (SEM). 展开更多
关键词 Poly (Vinylidene Fluoride) (PVDF) Energy Harvesting ELEcTROSPINNING nanoparticles ZnO MgO fe3O4
下载PDF
Synthesis and Characterization of Superparamagnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>Core-Shell Composite Nanoparticles 被引量:3
11
作者 Meizhen Gao Wen Li +2 位作者 Jingwei Dong Zhirong Zhang Bingjun Yang 《World Journal of Condensed Matter Physics》 2011年第2期49-54,共6页
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch... The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid. 展开更多
关键词 MAGNETITE nanoparticles fe3O4@SiO2 composite nanoparticles Dispersion Thermal Stability Particle Size Magnetic Property
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
12
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 fe acac in IS on of controllable Synthesis and Magnetic Properties of Monodisperse fe3O4 nanoparticles
下载PDF
Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
13
作者 李正华 李翔 陆伟 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期470-474,共5页
The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of ... The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of an individual MNP shows a typical dipolar response.The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations.Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures,such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution.This is crucial for the development and application of magnetic nanostructures and devices. 展开更多
关键词 fe3O4 nanoparticles MAGNETIc FORcE MIcROScOPY MAGNETIc DOMAIN
下载PDF
Synthesis and characterization of Fe_3O_4 magnetic nanoparticles and their heating effects under radiofrequency capacitive field
14
作者 李旭红 冯志明 +3 位作者 欧阳伟炜 谢小雪 廖遇平 唐劲天 《Journal of Central South University》 SCIE EI CAS 2010年第6期1185-1189,共5页
Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.... Fe3O4 magnetic nanoparticles with diameters varying from 10 to 426 nm were synthesized and characterized.Heating effects of Fe3O4 magnetic nanoparticles under radiofrequency capacitive field(RCF) with frequency of 27.12 MHz and power of 60-150 W were investigated.When the power of RCF is lower than 90 W,temperatures of Fe3O4 magnetic nanoparticles(75-150 mg/mL) can be raised and maximal temperatures are all lower than 50 ℃.When the power of RCF is 90-150 W,temperatures of Fe3O4 magnetic nanoparticles can be quickly raised and are all obviously higher than those of normal saline and distilled water under the same conditions.Temperature of Fe3O4 magnetic nanoparticles can even reach 70.2 ℃ under 150 W RCF.Heating effects of Fe3O4 magnetic nanoparticles are related to RCF power,particle size and particle concentration. 展开更多
关键词 fe3O4 磁性的 nanoparticles radiofrequency 电容的地 合成 描述 加热效果
下载PDF
Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction
15
作者 Jie Zhu Zewei Xiong +6 位作者 Jiming Zheng Zhihong Luo Guangbin Zhu Chao Xiao Zhengbing Meng Yibing Li Kun Luo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2543-2551,共9页
Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple... Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS)and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost. 展开更多
关键词 Nitrogen doping Hybrid fe/fe3c carbon black Oxygen reduction reaction
原文传递
The Film-forming Behavior on the Interface between Air and Hydrosol of Fe_2O_3 Nanoparticles
16
作者 曹立新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期525-527,共3页
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy... The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope. 展开更多
关键词 FILM INTERFAcE air and hydrosol fe2O3 nanoparticles
下载PDF
Determination of Anionic Surfactants in Environmental Water Samples Using Fluorescence Enhancement Method Based on Fe_3O_4@PAA-RB Fluorescent Nanoparticles
17
作者 RAO Tong-de 《Meteorological and Environmental Research》 2012年第5期25-27,共3页
[ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed ... [ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed a novel fluorescence enhancement method for the determi- nation of an anionic surfactant sodium dodecyl sulfate (SDS) through the gradual optimization of experiment conditions. [ Result] Under the opti- mum conditions, the extent of fluorescence enhancement is directly proportional to SDS concentration varying from 0.5 to 16.0 μmol/L, and the de- tection limit reaches 0.051 μmol/L. The relative standard deviation (RSD) for 4.0 μmol/L SDS is 3.3% ( n =6). The proposed method has been successfully applied to the determination of SDS in environmental water samples, with recovery of 96.3% -105.5%. E Conclusion] The novel fluo- rescence enhancement method is not only simple and rapid, but also has avoided using tedious solvent-extraction and toxic organic solvents. 展开更多
关键词 Fluorescence enhancement method fe3O4 @ PAA-RB fluorescent nanoparticles Sodium dodecyl sulfate (SDS) china
下载PDF
Cobalt Incorporated Pyramidal Shaped α-Fe2O3 Nanoparticles from Poly-vinyl Alcohol Based Precursor
18
作者 Atanu Naskar Susanta Bera +1 位作者 Awadesh Kumar Mallik Sunirmal Jana 《Advances in Nanoparticles》 2016年第1期9-17,共9页
Precursor foam based Co incorporated α-Fe<sub>2</sub>O<sub>3</sub> (AFC) was successfully synthesized at 600℃ calcination temperature by simple solution method using PVA. The formation of α-... Precursor foam based Co incorporated α-Fe<sub>2</sub>O<sub>3</sub> (AFC) was successfully synthesized at 600℃ calcination temperature by simple solution method using PVA. The formation of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles was confirmed by X-ray diffraction measurement and reduction in crystallite size was found after cobalt incorporation. Field emission scanning electron microscopy revealed the existence of pyramidal shaped iron oxide in AFC. FTIR and Raman spectra also confirmed the presence of α-Fe<sub>2</sub>O<sub>3</sub>. Photocatalytic activity study showed that the cobalt incorporated α-Fe<sub>2</sub>O<sub>3</sub> was better photocatalyst than pure α-Fe<sub>2</sub>O<sub>3</sub>. The cobalt incorporated iron oxide nanoparticles could be used for drug delivery application and this simple preparation method could be adopted for the synthesis of other transition metal oxides. 展开更多
关键词 Sol-Gel Based Foam α-fe2O3 nanoparticles Polyvinyl Alcohol catalytic Activity
下载PDF
Analysis of Spectroscopic, Optical and Magnetic Behaviour of PVDF/PMMA Blend Embedded by Magnetite (Fe<sub>3</sub>O<sub>4</sub>) Nanoparticles
19
作者 Laila H. Gaabour 《Optics and Photonics Journal》 2020年第8期197-209,共13页
In the present work, magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles have been prepared by a simple chemical method. Polymer nanocomposites based on the blend between poly vinylamine fluo... In the present work, magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles have been prepared by a simple chemical method. Polymer nanocomposites based on the blend between poly vinylamine fluoride (PVDF) and (methyl methacrylate) (PMMA) doped with different concentrations of Fe<sub>3</sub>O<sub>4</sub> nanoparticles have been prepared. The structural, optical, and magnetization properties of the nanocomposite samples were studied using suitable techniques. The X-ray study reflected that the cubic spinal structure of pure Fe<sub>3</sub>O<sub>4</sub> crystal. No small peaks or ripples were found in the X-ray spectra, conforming to good dispersion of Fe<sub>3</sub>O<sub>4</sub> within PVDF/PMMA matrices. The FT-IR analysis demonstrated the miscibility between the PVDF and PMMA blend with the interaction between the polymer blend and Fe<sub>3</sub>O<sub>4</sub>. The values of the band gap from UV-Vis study were decreased up to 4.21 eV, 3.01 eV for direct and indirect measurements, respectively. The magnetization was measured as a function of the applied magnetic field in the range of −2000 - 2000 Oersted. The curves of the magnetization indicated a paramagnetic behavior of pure Fe<sub>3</sub>O<sub>4</sub> nanoparticles and PVDF/PMMA-Fe<sub>3</sub>O<sub>4</sub> nanocomposites. The values of saturation magnetization for pure Fe<sub>3</sub>O<sub>4</sub> are nearly 75 emu/g, exhibiting a paramagnetic behavior, and it is decreased with the increase of Fe<sub>3</sub>O<sub>4</sub> content. 展开更多
关键词 PVDF/PMMA Blend Magnetite (fe3O4) nanoparticles XRD FT-IR UV-Vis Spectroscopy Magnetization Properties
下载PDF
Fe3O4 and Fe Nanoparticles by Chemical Reduction of Fe(acac)3 by Ascorbic Acid: Role of Water
20
作者 Ajinkya G. Nene Makoto Takahashi Prakash R. Somani 《World Journal of Nano Science and Engineering》 2016年第1期20-28,共9页
Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that... Nanoparticles of Fe<sub>3</sub>O<sub>4</sub> and Fe are chemically synthesized by reduction of Fe(acac)<sub>3</sub> using ascorbic acid in controlled condition. It was observed that addition of water during the chemical synthesis process yields Fe3O4 nanoparticles, whereas if the reaction is carried out in absence of water yields Fe nanoparticles—which get oxidized upon exposure to air atmosphere. Fe<sub>3</sub>O<sub>4</sub> (15 ± 5 nm) and Fe/iron oxide nanoparticles (7 ± 1 nm) were successfully synthesized in the comparative study reported herewith. Mechanism for formation/synthesis of Fe<sub>3</sub>O<sub>4</sub> and Fe/iron oxide nanoparticles is proposed herewith in which added water acts as an oxygen supplier. Physico-chemical characterization done by SEM, TEM, EDAX, and XPS supports the proposed mechanism. 展开更多
关键词 fe3O4 nanoparticles fe-nanoparticles Iron Oxide chemical Reduction Method
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部