Excessive discharge of dye wastewater has brought serious harm to human health and the environment.In this paper,a magnetic absorbent,ferroferric oxide@β-cyclodextrin(Fe_(3)O_(4)@CD),was prepared for the efficient ad...Excessive discharge of dye wastewater has brought serious harm to human health and the environment.In this paper,a magnetic absorbent,ferroferric oxide@β-cyclodextrin(Fe_(3)O_(4)@CD),was prepared for the efficient adsorption removal of basic fuchsin(BF)from dye wastewater,based on the special amphiphilicity ofβ-CD and the strong magnetism of Fe_(3)O_(4).A series of influence factors including the initial dye concentration,adsorbent dosage,temperature and pH were investigated,as well as the adsorption mechanism.The results show that Fe_(3)O_(4)@CD has the best adsorption and removal effect on BF dye at room temperature and neutral pH,when the initial concentration of dye is 25 mg/L and the adsorbent dosage is 100 mg.The adsorption behavior conforms to the pseudo-second-order kinetics and the Langmuir adsorption isotherm,and the adsorption process is spontaneously endothermic.Fe_(3)O_(4)@CD adsorbed with BF dye can be rapidly separated under an external magnetic field and then easily regenerated by HCl treatment.After 5 times of recycling,the removal rate of the prepared magnetic composite on BF dye is kept above 75%.This work will provide an economic and eco-friendly technology for the treatment of the actual dye wastewater.展开更多
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspher...Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
基金Project(2017YFC1600306)supported by the National Key R&D Program of ChinaProject(21505005)supported by the National Natural Science Foundation of China+1 种基金Project(2018JJ2424)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2019IC21)supported by the International Cooperative Project for“Double First-Class”,China。
文摘Excessive discharge of dye wastewater has brought serious harm to human health and the environment.In this paper,a magnetic absorbent,ferroferric oxide@β-cyclodextrin(Fe_(3)O_(4)@CD),was prepared for the efficient adsorption removal of basic fuchsin(BF)from dye wastewater,based on the special amphiphilicity ofβ-CD and the strong magnetism of Fe_(3)O_(4).A series of influence factors including the initial dye concentration,adsorbent dosage,temperature and pH were investigated,as well as the adsorption mechanism.The results show that Fe_(3)O_(4)@CD has the best adsorption and removal effect on BF dye at room temperature and neutral pH,when the initial concentration of dye is 25 mg/L and the adsorbent dosage is 100 mg.The adsorption behavior conforms to the pseudo-second-order kinetics and the Langmuir adsorption isotherm,and the adsorption process is spontaneously endothermic.Fe_(3)O_(4)@CD adsorbed with BF dye can be rapidly separated under an external magnetic field and then easily regenerated by HCl treatment.After 5 times of recycling,the removal rate of the prepared magnetic composite on BF dye is kept above 75%.This work will provide an economic and eco-friendly technology for the treatment of the actual dye wastewater.
基金financially supported by the National Natural Science Foundation of China(Nos.21875044,52073064,22005058 and 22005057)National Key R&D Program of China(No.2020YFB2008600)+3 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)Program of Shanghai Academic Research Leader(No.19XD1420300)China Post-doctoral Science Foundation(Nos.2020M670973,BX20200085)the State Key Laboratory of Transducer Technology of China(No.SKT1904)。
文摘Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.