期刊文献+
共找到1,065篇文章
< 1 2 54 >
每页显示 20 50 100
Iron/aluminum nanocomposites prepared by one-step reduction method and their effects on thermal decomposition of AP and AN
1
作者 Yong Kou Yi Wang +2 位作者 Jun Zhang Kai-ge Guo Xiao-lan Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期74-87,共14页
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist... Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants. 展开更多
关键词 ALUMINUM fe/Al composite fuel High reactivity Thermal decomposition AP AN
下载PDF
Preparation and Properties of Bilayer Composite Materials of Cu-coated Fe and CuSn10
2
作者 Xuan YE Ling QIN Yuxiang LING 《Research and Application of Materials Science》 2023年第2期33-36,共4页
Bilayer composite materials of Cu-coated Fe and CuSn10 containing 0%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%Cu-coated Fe were prepared in mesh belt sintering furnace.Microscopic pore morphology of materials was observe... Bilayer composite materials of Cu-coated Fe and CuSn10 containing 0%,5%,10%,15%,20%,25%,30%,35%,40%,45%,50%Cu-coated Fe were prepared in mesh belt sintering furnace.Microscopic pore morphology of materials was observed,bending strength was tested.Results show that,There is a good bonding between Cu-coated Fe and CuSn10,with the increase of Cu-coated Fe content from 0%to 50%,bending strength of bilayer composite materials increases. 展开更多
关键词 Cu-coated fe CuSn10 bilayer composite
下载PDF
Effect of Fe content on microstructure and mechanical properties of Cu-Fe-based composite coatings by laser induction hybrid rapid cladding 被引量:1
3
作者 Sheng-feng ZHOU Jian-bo LEI +3 位作者 Zheng XIONG Jin-bo GUO Zhen-jie GU Hong-bo PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3196-3204,共9页
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser... To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate. 展开更多
关键词 composite coating laser induction hybrid rapid cladding Cu.fe alloy liquid phase separation microstructure mechanical properties
下载PDF
Heterogeneous catalytic activation of peroxymonosulfate for efficient degradation of organic pollutants by magnetic Cu^0/Fe_3O_4 submicron composites 被引量:10
4
作者 聂刚 黄佳 +3 位作者 胡冶州 丁耀彬 韩小彦 唐和清 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期227-239,共13页
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr... Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants. 展开更多
关键词 Heterogeneous catalysis Magnetic Cu^0/fe3O4 composite PEROXYMONOSULFATE Singlet oxygen Oxidative degradation
下载PDF
不同形貌Al-Fe金属的块体压制成形模拟研究
5
作者 李振亮 王鑫 《制造技术与机床》 北大核心 2024年第4期71-77,共7页
文章以含40%Al的Al-Fe复合金属为研究对象,对颗粒状和屑状40Al-Fe复合金属分别进行压制预变形,并对屑状40Al-Fe复合金属预制坯进行了二次热压缩变形,重点研究压制预变形及二次热压缩对Al-Fe复合金属成形性和界面影响。结果表明:压力为16... 文章以含40%Al的Al-Fe复合金属为研究对象,对颗粒状和屑状40Al-Fe复合金属分别进行压制预变形,并对屑状40Al-Fe复合金属预制坯进行了二次热压缩变形,重点研究压制预变形及二次热压缩对Al-Fe复合金属成形性和界面影响。结果表明:压力为16 MPa时,颗粒状40Al-Fe复合金属预制坯(密度为4.54 g/cm^(3))成形性良好且形成致密界面;压力为16 MPa时,屑状40Al-Fe复合金属预制坯(密度为3.50 g/cm3)可以成形但界面存在孔洞,Al屑主要为“片层状”“狗牙状”“圆圈状”“波浪状”,其经二次热压缩变形,“圆圈状”Al屑连成一个整体,“狗牙状”与“波浪状”Al屑均演变为“片层状”,而Fe屑仍为“片层状”“块状”,未发生明显变形。变形温度300℃、变形速率0.5 s^(-1)、变形程度0.1是目前生产工艺最佳参数,此时屑状40Al-Fe复合金属成形性最佳且界面结合良好(密度为4.66 g/cm^(3))。 展开更多
关键词 压制成形 Al-fe复合金属 界面
下载PDF
Erosive Wear and Wear Mechanism of in situ TiC_P/Fe Composites 被引量:3
6
作者 Zhaojing LIU, Zhiliang NING , Fengzhen LI, Xiurong YAO and Shanzhi RENSchool of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期719-723,共5页
The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resi... The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resistant white cast iron. The results suggest that the wear resistance of the in situ TiCp/Fe composite is higher than that of wear-resistant white cast iron under the sand erosive wear condition. The wear mechanism of the wear-resistant white cast iron was a cycle process that base surface was worn and carbides were exposed, then carbides was broken and wear pits appeared. While the wear mechanism of in situ TiCp/Fe composite was a cycle process that base surface was worn and TiC grains were exposed and dropped. The wear resistance of in situ TiCp/Fe composite was lower than that of wear-resistant white cast iron under the slurry erosive wear condition. Under such circumstance, the material was not only undergone erosive wear but also electrochemistry erosion due to the contact with water in the medium. The wear behaviours can be a combination of two kinds of wear and the sand erosive wear is worse than slurry erosive wear. 展开更多
关键词 In situ TiCp/fe composite Erosive wear Wear mechanism
下载PDF
Effects of technological parameters on microstructures and properties of in situ TiC_p/Fe composites 被引量:2
7
作者 严有为 魏伯康 +1 位作者 傅正义 袁润章 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期187-191,共5页
The effects of the reactive temperature, time and the cooling rate of an Fe Ti C alloy melt on the microstructures and mechanical properties of in situ TiC p/Fe composites were investigated. The results show that the ... The effects of the reactive temperature, time and the cooling rate of an Fe Ti C alloy melt on the microstructures and mechanical properties of in situ TiC p/Fe composites were investigated. The results show that the hardness and impact toughness of the prepared composites increase with increasing the reactive temperature, because more and finer TiC particles are formed in the higher temperature melt. However, after the TiC synthesis reaction in the melt completed, the impact toughness of the composites will decrease if the melt reactive time is further prolonged, owing to the coarsening of the formed TiC particles. Under the present experimental condition, the cooling rate of the melt containing dispersions has little influence on the number, size and distribution of the particles in the composites. 展开更多
关键词 in SITU reaction microstructure property TiC_p/fe compositeS
下载PDF
Progressive Failure Evaluation of Composite Skin-Stiffener Joints Using Node to Surface Interactions and CZM 被引量:5
8
作者 A.Sane P.M.Padole R.V.Uddanwadiker 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第5期281-294,共14页
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ... T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment. 展开更多
关键词 Carbon fiber composite fe analysis T-JOINT COHESIVE zone modeling NODE to surface interactions
下载PDF
Stabilization of ferric arsenate sludge with mechanochemically prepared FeS2/Fe composites 被引量:3
9
作者 Xiao-bo MIN Tian-yu PENG +3 位作者 Yang-wen-jun LI Yong KE Yan-jie LIANG Xing-yu HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1983-1992,共10页
FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated... FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%. 展开更多
关键词 ARSENIC ferric arsenate sludge STABILIZATION mechanical milling feS2/fe composites
下载PDF
IN SITU GRADIENT DOUBLE-LAYER COMPOSITES OF Al-Fe ALLOY BY CENTRIFUGAL CASTING 被引量:1
10
作者 Wang, Qudong 《中国有色金属学会会刊:英文版》 EI CSCD 1997年第1期126-131,共6页
INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoun... INSITUGRADIENTDOUBLELAYERCOMPOSITESOFAlFeALLOYBYCENTRIFUGALCASTING①WangQudong,JinJunzeResearchCenterofFoundryEnginering,Dal... 展开更多
关键词 in SITU compositeS GRADIENT compositeS double layer compositeS Al fe ALLOY CENTRIFUGAL CASTING
下载PDF
Electromagnetic and microwave absorbing properties of FeCoB powder composites 被引量:7
11
作者 Shen-Gen Zhang Hang-Xin Zhu +3 位作者 Jian-Jun Tian De-An Pan Bo Liu Yan-Tao Kang 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期402-407,共6页
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t... The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz. 展开更多
关键词 fe48Co48B4 powder composites Mechanical milling Electromagnetic parameters Microwave absorbing properties
下载PDF
MIL-100(Fe)光芬顿催化剂的制备与循环使用研究
12
作者 李涛 王华 +7 位作者 徐佳军 王宁 林家一 陈友梅 陈璐 薛安 储智尧 黎阳 《功能材料》 CAS CSCD 北大核心 2024年第5期5147-5151,5176,共6页
为解决金属有机框架MIL-100(Fe)粉末在实际工业应用中难以回收重复利用的难题,采用水热法合成了MIL-100(Fe)粉末,利用真空抽滤法将其负载到氧化铝多孔陶瓷片上,制备了MIL-100(Fe)@多孔陶瓷复合材料。利用场发射扫描电子显微镜能谱联用仪... 为解决金属有机框架MIL-100(Fe)粉末在实际工业应用中难以回收重复利用的难题,采用水热法合成了MIL-100(Fe)粉末,利用真空抽滤法将其负载到氧化铝多孔陶瓷片上,制备了MIL-100(Fe)@多孔陶瓷复合材料。利用场发射扫描电子显微镜能谱联用仪(FE-SEM-EDS)、X射线衍射仪(XRD)、比表面积分析仪(BET)、紫外可见光分光光度计(UV-VIS)等仪器对MIL-100(Fe)及复合材料的结构与性能进行了表征;以罗丹明B(RhB)溶液模拟染料废水,研究了在MIL-100(Fe)在H_(2)O_(2)反应体系中对染料的光芬顿降解能力。结果表明,MIL-100(Fe)呈现八面体结构,比表面积高达1152.75 m^(2)/g,当反应温度为60℃、H_(2)O_(2)的初始浓度为0.5 g/L、RhB溶液的初始浓度为20 mg/L时,RhB溶液的降解率达到99.26%。MIL-100(Fe)@多孔陶瓷在循环使用5次时,对RhB溶液的降解率仍达到98%以上,循环使用稳定性良好,具有商业化应用前景。 展开更多
关键词 光芬顿 金属有机骨架 MIL-100(fe) 多孔陶瓷 复合材料
下载PDF
Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites 被引量:8
13
作者 Jian-ying WANG Jing-hua FANG +5 位作者 Hai-lin YANG Zhi-lin LIU Rui-di LI Shou-xun JI Yun WANG Jian-ming RUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1484-1494,共11页
The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the ... The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications. 展开更多
关键词 TIC fe40Mn40Cr10Co10/TiC composites mechanical properties wear resistance spark plasma sintering
下载PDF
Effect of Fe_2P in LiFePO_4/Fe_2P composite on electrochemical properties synthesized by MA and control of heat condition 被引量:4
14
作者 PARK Jong Suk LEE Kyung Tae LEE Kyung Sub 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期179-183,共5页
In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying.... In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying. The discharge capacity of the fast cooled was 83 mAh·g-1 and the slow cooled 121 mAh·g-1. The particle size of the synthesized powder was examined by transmission electron microscopy and distribution of Fe2P was characterized using scanning electron microscopy (SEM). In addition, two-step heat treatment was carried out for better distribution of Fe2P. X-ray diffraction (XRD) and Rietveld refinement reveal that LiFePO4/Fe2P composite consists of 95.77% LiFePO4 and 4.33% of Fe2P. 展开更多
关键词 LifePO4/fe2P composite mechanical alloying heat treatment discharge capacity
下载PDF
Properties of Hot-Pressed Al_2O_3-Fe Composites 被引量:4
15
作者 M.M.El-Sayed Seleman, Xudong SUN and Liang ZUO Department of Materials Science and Engineering, Northeastern University, Shenyang 110006, China K.A.Khalil Powder Metallurgy Institute, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期538-542,共5页
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were... Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed. 展开更多
关键词 fe Properties of Hot-Pressed Al2O3-fe composites AL
下载PDF
Mn-Fe-Ce-O催化剂对助燃脱硝性能的影响
16
作者 田春雨 董浩 +3 位作者 迟姚玲 黄傲寒 李欣亮 靳广洲 《石油化工》 CAS CSCD 北大核心 2024年第11期1552-1559,共8页
采用改进的柠檬酸络合法制备了Mn-Fe-Ce-O复合氧化物,采用XRD,H_(2)-TPR,XPS,SEM,EDS等方法分析了试样的结构与物性,并对其氧化和催化CO还原NO的性能进行了评价。实验结果表明,Mn-Fe-Ce-O复合氧化物中主要为Mn_(3)O_(4)和CeO_(2)物相,Fe... 采用改进的柠檬酸络合法制备了Mn-Fe-Ce-O复合氧化物,采用XRD,H_(2)-TPR,XPS,SEM,EDS等方法分析了试样的结构与物性,并对其氧化和催化CO还原NO的性能进行了评价。实验结果表明,Mn-Fe-Ce-O复合氧化物中主要为Mn_(3)O_(4)和CeO_(2)物相,Fe和Ce的加入可增大复合氧化物的比表面积,且表面元素分布均匀,无明显集聚状态,加入Ce后复合氧化物颗粒变得细小,Mn^(3+)+Mn^(4+)含量和表面吸附氧含量增大,H_(2)-TPR还原峰向低温区偏移。Mn_(9)Fe_(1)O_(z)具有良好的氧化CO能力,400℃下CO转化率为99.56%,Mn-Fe-Ce-O复合氧化物催化CO还原NO的活性高于Mn-Fe-O复合氧化物,其中,(Mn_(9)Fe_(1))_(7)Ce_(3)O_(z)活性最高,在350℃下NO转化率为85.75%。 展开更多
关键词 Mn-fe-Ce-O 复合氧化物 脱硝 CO氧化
下载PDF
原位自生富Fe相增强Mg-Cu-Ag-Gd-Fe非晶复合材料的制备及其力学性能
17
作者 黄润华 郭威 +2 位作者 吕书林 王锦程 吴树森 《铸造》 CAS 2024年第7期941-946,共6页
基于元素间混合焓差异,通过在Mg基非晶合金中添加Fe元素,使合金凝固过程中析出原位自生富Fe相,从而制备出原位自生相增强镁基非晶复合材料。研究发现,富Fe相均匀分散在镁基非晶合金基体中,平均尺寸为8μm,体积含量约为14%。相比于基体... 基于元素间混合焓差异,通过在Mg基非晶合金中添加Fe元素,使合金凝固过程中析出原位自生富Fe相,从而制备出原位自生相增强镁基非晶复合材料。研究发现,富Fe相均匀分散在镁基非晶合金基体中,平均尺寸为8μm,体积含量约为14%。相比于基体材料的脆性断裂,原位自生富Fe相增强镁基非晶复合材料表现出明显的屈服与塑性变形,塑性形变量达9.5%,并且断裂强度也较基体合金有所提高。通过对断面的分析发现富Fe相在变形过程中可有效阻碍非晶基体中主剪切带的快速扩展,使其发生偏转和增殖,生成多重剪切带,使复合材料的力学性能显著提高。 展开更多
关键词 非晶复合材料 室温塑性 剪切带 fe
下载PDF
Melt Infiltration Ability and Microstructural Evolution of Fe40Al/ TiC Composites System 被引量:2
18
作者 F J Oliveira J L Baptista J M Vieira 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期93-,共1页
Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and cor... Pressureless melt infiltration is an economic route f or preparation of high-density ceramic/melt composites. In this study, the Fe40 Al iron aluminide intermetallic, a low cost material of excellent oxidation and corrosion resistance, was used as binder for fabricating Fe40Al/TiC composites b y pressureless melt infiltration. The wetting ability of liquid Fe40Al in porous TiC pre-form was studied by in-situ monitoring the melting and infiltration p rocess. The infiltration ability was investigated by observing the distance of l iquid Fe40Al intrusion in porous TiC pre-forms at different infiltration temper atures and times by using optical microscope. Porous TiC per-forms with density of 60%~88%TD (theoretical density), prepared under pre-defined sintering temp e rature cycles, were used for fabricating Fe40Al/TiC composites in the range of 1 2%~40% metal content by volume. Almost full dense Fe40Al/TiC composites were su c cessfully fabricated by this technique. Liquid Fe40Al exhibited excellent infilt ration ability, the distance of complete intrusion of liquid Fe40Al in the TiC s intered pre-form with density of 88%TD was over 7 mm after 5 min at the inf iltration temperature of 1 450 ℃. Microstructural observation by SEM and TEM also showed that liquid Fe40Al filled the very narrow gaps among TiC particles, the interfaces of TiC particles and F e40Al plastic ligaments being metallurgical bonded. TEM revealed that high densi ty of dislocations formed in Fe40Al ligaments during solidification, which favor the mechanical properties. Ti decomposed from TiC particles and dissolved into Fe40Al during infiltration. According to the compositional analysis of TEM-EDS, the concentration of Ti in Fe40Al ranges at 1at%~4at% depending on composite f a bricating conditions and the distance from the measuring point to the closest Ti C particles. XRD analysis indicated that the composites were composed of two pha ses, the original TiC and Fe 0.4Al 0.6 intermetallic. No new phase formed during infiltration, but the lattice parameter of Fe 0.4Al 0.6 was expended due to the Ti in the solid solution. 展开更多
关键词 TiC composites System Melt Infiltration Ability and Microstructural Evolution of fe40Al fe
下载PDF
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO_2 composite electrodeposition 被引量:10
19
作者 王云燕 彭文杰 +1 位作者 柴立元 舒余德 《Journal of Central South University of Technology》 EI 2003年第3期183-189,共7页
Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-s... Electrochemical behaviors of Zn-Fe alloy and Zn-Fe-TiO2 composite electrodeposition in alkaline zincatesolutions were studied respectively by the methods of linear potential sweep and cyclic voltammetry. From the re-sults it can be concluded that Zn shows under potential deposition, Zn-Fe alloy codeposition is anomalous codeposi-tion and Zn-Fe alloy cathode polarization is increased with the introduction of additive. From the view point of elec-trochemistry, the reasons that the content of Fe in the Zn-Fe coating changes with the composition of the electrolyteand the process conditions altering and the relationship between the content of Fe and the appearance of the coatingare interpreted. The cathode polarization of Zn-Fe alloy codeposition is enhanced obviously with addition of additive.In the course of composite electrodeposition, TiO2 has less promotion to electrodeposition of zinc ions than to iron i-ons, while the electrodeposition of iron ions improves the content of TiO2 in composite coating, which is inagreement with the results of process experiments. 展开更多
关键词 Zn-fe alloy ELECTRODEPOSITION Zn-fe-TiO2 composite electrochemical behavior TQ153
下载PDF
Electrochemical performance of LiFePO_4/(C+Fe_2P) composite cathode material synthesized by sol-gel method 被引量:2
20
作者 陈权启 李小栓 王建明 《Journal of Central South University》 SCIE EI CAS 2011年第4期978-984,共7页
A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical perf... A LiFePO4/(C+Fe2P) composite cathode material was prepared by a sol-gel method using Fe(NO3)3.9H20, LiAc·H2O), NHaH2PO4 and citric acid as raw materials, and the physical properties and electrochemical performance of the composite cathode material were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical tests. The Fe2P content, morphology and electrochemical performance of LiFePOa/(C+Fe2P) composite depend on the calcination temperature. The optimized LiFePO4/(C+FeeP) composite is prepared at 650 ~C and the optimized composite exhibits sphere-like morphology with porous structure and Fe2P content of about 3.2% (mass fraction). The discharge capacity of the optimized LiFePO4/(C+FeRP) at 0.1C is 156 and 161 mA.h/g at 25 and 55 ℃, respectively, and the corresponding capacity retentions are 96% after 30 cycles; while the capacity at 1C is 142 and 149 mA.h/g at 25 and 55 ℃, respectively, and the capacity still remains 135 and 142 mA-h/g after 30 cycles at 25 and 55℃, respectively. 展开更多
关键词 LifePO4/(C+fe2P) composite sol-gel sphere-like morphology electrochemical performance
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部