期刊文献+
共找到991篇文章
< 1 2 50 >
每页显示 20 50 100
Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane 被引量:3
1
作者 Bingyao Huang Xiujin Li +3 位作者 Shengfu Ji Bao Lang Fabien Habimana Chengyue Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期225-231,共7页
A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and... A series of Ni/SBA-15 catalysts with Ni contents ranging from 5 wt% to 15 wt%, as well as another series of 10%Ni/MgO/SBA-15 catalysts, in which the range of the MgO content was from 1 wt% to 7 wt%, were prepared, and their catalytic performances for the reaction of combined steam and carbon dioxide reforming of methane were investigated in a continuous flow microreactor. The structures of the catalysts were characterized using the XRD, H2-TPR and CO2-TPD techniques. The results indicated that the CO selectivity for this reaction was very close to 100%, and the H2/CO ratio of the product gas could be controlled by changing the H2O/CO2 molar ratio of the feed gas. The simultaneous and plentiful existing of steam and CO2 had a significant influence on the catalytic performance of the 10%Ni/SBA-15 catalyst without modification. After reacting at 850 °C for 120 h over this catalyst, the CH4 conversion dropped from 98% to 85%, and the CO2 conversion decreased from 86% to 53%. However, the 10%Ni/3%MgO/SBA-15 catalyst exhibited a much better catalytic performance, and after reacting for 620 h, the CO2 conversion over this catalyst dropped from 92% to around 77%, while the CH4 conversion was not decreased. Oxidation of the Ni0 species as well as carbon deposition during the reaction were the main reasons for the deactivation of the catalyst without modification. On the other hand, modification by the MgO promoter improved the dispersion of the Ni0 species, and enhanced the CO2 adsorption affinity which in turn depressed the occurring of carbon deposition, and thus retarded the deactivation process. 展开更多
关键词 mgo promoter Ni-based catalyst SBA-15 methane combined steam carbon dioxide reforming synthesis gas
下载PDF
Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al_2O_3 nanocatalyst in dry reforming of methane 被引量:6
2
作者 Zahra Alipour Mehran Rezaei Fereshteh Meshkani 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期633-638,共6页
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were in... MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied. 展开更多
关键词 nickel catalyst mgo modifier SYNGAS dry reforming coke formation
下载PDF
Screening of MgO- and CeO_2-Based Catalysts for Carbon Dioxide Oxidative Coupling of Methane to C_(2+) Hydrocarbons 被引量:5
3
作者 Istadi Nor Aishah Saidina Amin 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第1期23-35,共13页
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so... The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively. 展开更多
关键词 catalyst screening carbon dioxide oxidative coupling METHANE ternary metal oxide binary metal oxide mgo CEO2 C2+ hydrocarbons
下载PDF
Effect of La on Partial Oxidation of Ethanol to Hydrogen over Ni/Fe Catalysts 被引量:2
4
作者 WANG Wei ping WANG Zhi fei +1 位作者 DING Yan and LU Gong xuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第2期206-210,共5页
The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co precipitation method. The effects of introduction of La promoter and the reaction temperature on the catalytic ... The partial oxidation of ethanol to hydrogen was investigated over Ni/Fe/La catalysts prepared by the co precipitation method. The effects of introduction of La promoter and the reaction temperature on the catalytic performance were studied. It was found that the introduction of La into Ni/Fe catalysts is helpful to increase the selectivity to hydrogen and the stability of the catalysts. The results of XRD and XPS characterization show that the structure of the catalyst was changed during the reaction. The existence of LaFeO 3 species is possibly the main reason of the increase of the catalyst stability. 展开更多
关键词 ETHANOL Ni/fe/La catalyst Partial oxidation Production of hydrogen
下载PDF
Layered double hydroxide-like Mg_3Al_(1–x)Fe_x materials as supports for Ir catalysts: Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde 被引量:4
5
作者 Weiwei Lin Haiyang Cheng +3 位作者 Xiaoru Li Chao Zhang Fengyu Zhao Masahiko Arai 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期988-996,共9页
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ... Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry. 展开更多
关键词 Ir catalyst Layered double hydroxide fe doping Support effect Selective hydrogenation CINNAMALDEHYDE
下载PDF
Catalytic activity of Cu/ZnO catalysts mediated by MgO promoter in hydrogenation of methyl acetate to ethanol 被引量:3
6
作者 Fang Zhang Zhiyang Chen +3 位作者 Xudong Fang Hongchao Liu Yong Liu Wenliang Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期203-209,I0006,共8页
Hydrogenation of methyl acetate is a key step in ethanol synthesis from dimethyl ether carbonylation and Cu-based catalysts are widely studied.We report here that the hydrogenation activity of Cu/ZnO catalysts can be ... Hydrogenation of methyl acetate is a key step in ethanol synthesis from dimethyl ether carbonylation and Cu-based catalysts are widely studied.We report here that the hydrogenation activity of Cu/ZnO catalysts can be enhanced by the addition of MgO promoter.The evolution of crystal phases during coprecipitation and the physicochemical properties of calcined and reduced catalysts by X-ray diffraction(XRD),thermogravimetric(TG)-mass spectrometry(MS),Brunauer-Emmett-Teller(BET),transmission electron microscopy(TEM),N_(2)O titration,in situ CO-Fourier transform infrared spectroscopy(FTIR)and H_(2)-temperature programmed reduction(H_(2)-TPR)reveal that the promoter effect likely lies in the presence of Mg^(2+).A proper amount of Mg^(2+)mediates the precipitation process of Cu and Zn,leading to preferable formation of aurichalcite(Cu_(x)Zn_(1-x))5(CO_(3))_(2)(OH)_(6) crystal phase and a small amount of basic carbonates such as hydrozincite Zn_(5)(CO_(3))_(2)(OH)_(6) and malachite Cu_(2) CO_(3)(OH)_(2).The presence of aurichalcite strengthens the interaction between Cu and Zn species,and thus enhances the dispersity of CuO species and helps generation of Cu^(+)species on reduced catalysts.Furthermore,the performance of Cu/ZnO catalysts exhibits an optimal dependence on the Mg loading,i.e.,17.5%.However,too much Mg^(2+)in the precipitation liquid prohibits formation of aurichalcite but enhances formation of basic nitrates,leading to a dramatically reduced hydrogenation activity.These findings may find applications for optimization of other Cu-based catalysts in a wider range of hydrogenation reactions. 展开更多
关键词 Methyl acetate HYDROGENATION Cu/ZnO catalyst mgo promoter Precursor effect Aurichalcite
下载PDF
Preparation of Fe_2P/Al_2O_3 and FeP/Al_2O_3 catalysts for the hydrotreating reactions 被引量:3
7
作者 Yamei Yuan Jiayou Zhang +2 位作者 Hui Chen Qiumei Hou Jianyi Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期116-121,共6页
A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in... A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C. 展开更多
关键词 fe2P/Al2O3 catalyst feP/Al2O3 catalyst Liquid phase phosphidation PPh3 HYDROTREATING REACTIONS
下载PDF
Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO_2 reforming of CH_4 被引量:4
8
作者 Xiangdong Feng Jie Feng Wenying Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期88-98,共11页
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o... The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 CO2 reforming of CH4 Carbon‐deposition resistant Activation of CO2 Ni‐based catalyst Low concentration mgo promoter
下载PDF
CH_4-CO_2 reforming to syngas over Pt-CeO_2-ZrO_2/MgO catalysts: Modification of support using ion exchange resin method 被引量:1
9
作者 Min Yang Haijun Guo +1 位作者 Yansheng Li Qiong Dang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期76-82,共7页
Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, ... Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction. 展开更多
关键词 Pt-CeO2-ZrO2/mgo catalyst CH4-CO2 reforming support modification stability
下载PDF
Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor
10
作者 Jianzhi Wang Xugen Li +6 位作者 Cheng Zhang Yuan Pu Jiawu Liu Jie Liu Yanping Liu Xiao Lin Faquan Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期212-221,共10页
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese... The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications. 展开更多
关键词 2-nitro-4-methylsulfonylbenzoic 2-nitro-4-methylsulfonyltoluene feOOH/fe3O4/MOF catalyst MICROREACTOR Oxidation
下载PDF
Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference 被引量:6
11
作者 Lina Wang Xin Wan +2 位作者 Shuangyu Liu Li Xu Jianglan Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期77-87,共11页
Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platin... Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platinum group metal(PGM)catalysts creates a barrier for the large-scale application of PEMFC.Tremendous efforts have been devoted to the development of low-cost PGM-free catalysts,especially the Fe-N-C catalysts,to replace the expensive PGM catalysts.However,the characterization methods and evaluation standards of the catalysts varies,which is not conducive to the comparison of PGM-free catalysts.U.S.Department of energy(DOE)is the only authority that specifies the testing standards and activity targets for PGM-free catalysts.In this review,the major breakthroughs of Fe-N-C catalysts are outlined with the reference of DOE standards and targets.The preparation and characteristics of these highly active Fe-N-C catalysts are briefly introduced.Moreover,the efforts on improving the mass transfer and the durability issue of Fe-N-C fuel cell are discussed.Finally,the prospective directions concerning the comprehensive evaluation of the Fe-N-C catalysts are proposed. 展开更多
关键词 PEMFC fe-N-C catalysts U.S.DOE Test standards Activity targets
下载PDF
Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:A DFT study 被引量:5
12
作者 Yunpeng Guo Jie Feng Wenying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1442-1448,共7页
Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses su... Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity. 展开更多
关键词 Particle size effect Ni/mgo catalyst CH4/CO2 reforming Density functional theory
下载PDF
Influence of different Fe doping strategies on modulating active sites and oxygen reduction reaction performance of Fe, N-doped carbonaceous catalysts 被引量:1
13
作者 Yang Liu Suqiong He +2 位作者 Bing Huang Ziyan Kong Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期511-520,I0013,共11页
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i... Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries. 展开更多
关键词 Mg-air battery Oxygen reduction reaction Single-atom fe/N/C catalysts fe doping strategies Zeolitic imidazole frameworks
下载PDF
Effect of Al_2O_3 Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis 被引量:7
14
作者 Hai-Jun Wan Bao-Shan Wu +4 位作者 Xia An Ting-Zhen Li Zhi-Chao Tao Hong-Wei Xiang Yong-Wang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期130-138,共9页
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz... A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst Al2O3 binder fe-Al2O3 interaction
下载PDF
Preparation and characterization of ultrafine Fe-Cu-based catalysts for CO hydrogenation 被引量:4
15
作者 Yunlai Su Yingli Wang Zhongmin Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期327-331,共5页
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)... The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively. 展开更多
关键词 MICROEMULSION CONDUCTIVITY ultrafine fe-Cu-based catalyst CO hydrogenation
下载PDF
The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeO_(x) particles 被引量:1
16
作者 Peiwei Han Chunhua Xu +5 位作者 Yamin Wang Chenglin Sun Huangzhao Wei Haibo Jin Ying Zhao Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期105-114,共10页
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th... FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO. 展开更多
关键词 Catalytic wet peroxide oxidation fe/AC catalyst Surface functional groups Reaction mechanism
下载PDF
Enhanced stability of Fe-modified CuO-ZnO-ZrO_(2)-Al_(2)O_(3)/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO_(2)hydrogenation 被引量:1
17
作者 Xiao Fan Shoujie Ren +3 位作者 Baitang Jin Shiguang Li Miao Yu Xinhua Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期106-113,共8页
A series of iron(Fe)modified CuO-ZnO-ZrO_(2)-Al_(2)O_(3)(CZZA)catalysts,with various Fe loadings,were prepared using a co-precipitation method.A bifunctional catalyst,consisting of Fe-modified CZZA and HZSM-5,was stud... A series of iron(Fe)modified CuO-ZnO-ZrO_(2)-Al_(2)O_(3)(CZZA)catalysts,with various Fe loadings,were prepared using a co-precipitation method.A bifunctional catalyst,consisting of Fe-modified CZZA and HZSM-5,was studied for dimethyl ether(DME)synthesis via CO_(2)hydrogenation.The effects of Fe loading,reaction temperature,reaction pressure,space velocity,and concentrations of precursor for the synthesis of the Fe-modified CZZA catalyst on the catalytic activity of DME synthesis were investigated.Long-term stability tests showed that Fe modification of the CZZA catalyst improved the catalyst stability for DME synthesis via CO_(2)hydrogenation.The activity loss,in terms of DME yield,was significantly reduced from 4.2%to 1.4%in a 100 h run of reaction,when the Fe loading amount was 0.5(molar ratio of Fe to Cu).An analysis of hydrogen temperature programmed reduction revealed that the introduction of Fe improved the reducibility of the catalysts,due to assisted adsorption of H2 on iron oxide.The good stability of Femodified CZZA catalysts in the DME formation was most likely attributed to oxygen spillover that was introduced by the addition of iron oxide.This could have inhibited the oxidation of the Cu surface and enhanced the thermal stability of copper during long-term reactions. 展开更多
关键词 CO_(2)hydrogenation Cu-ZnO based catalyst Iron(fe) Dimethyl ether(DME) STABILITY
下载PDF
Conversion of syngas to higher alcohols over Cu-Fe-Zr catalysts induced by ethanol 被引量:3
18
作者 Hongtao Zhang Xiaomei Yang +2 位作者 Lipeng Zhou Yunlai Su Zhongmin Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期337-340,共4页
Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared... Ethanol induced method was applied to prepare Cu-Fe-Zr catalysts for conversion of syngas to higher alcohols. The catalytic performance of the catalysts induced by ethanol was superior to that of the catalyst prepared by the conventional precipitation method. Among various procedures for ethanol induced method, it was found that incorporation of ethanol in the precipitation process was the better. After incorporation of ethanol, the crystal size of CuO decreased and the reduction of copper species became easier. The better activity of Cu-Fe-Zr catalysts prepared by ethanol induced procedures was probably caused by the higher dispersion of Cu species. 展开更多
关键词 fe-Cu-Zr catalyst CO hydrogenation higher alcohols induced by ethanol
下载PDF
Oxidation of Mercaptans from Light Oil Sweetening by Fe_2O_3/MgO/Al_2O_3 Supported CoPcS Catalyst 被引量:1
19
作者 Mei Hua Liu Hui Sheng Kuang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第3期12-17,共6页
MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was ev... MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst. 展开更多
关键词 mercaptan oxidation solid base fe2O3/mgo/Al2O3
下载PDF
Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al_2O_3 and Ni–Mo/Al_2O_3 catalysts using hydrogen peroxide and formic acid as oxidants 被引量:3
20
作者 Yaseen Muhammad Ayesha Shoukat +2 位作者 Ata Ur Rahman Haroon Ur Rashid Waqas Ahmad 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期593-600,共8页
This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using ... This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition. 展开更多
关键词 Oxidative desulfurization Fuel oil Dibenzothiophene fe promoted (Co/Ni)-Mo/Al2O3 catalyst XRD
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部