Ag/Fe multilayers with well compositional modulation periodicity of 4-60 nm were prepared at room temperature by evaporation deposition using an ultra high vacuum (UHV) chamber. Their microstructure and hardness were ...Ag/Fe multilayers with well compositional modulation periodicity of 4-60 nm were prepared at room temperature by evaporation deposition using an ultra high vacuum (UHV) chamber. Their microstructure and hardness were investigated using XRD, TEM and nanoindentation. The fcc/bcc type multilayers show a textured polycrystalline growth with Ag (111) and Fe (110) in Ag layers and Fe layers, respectively. The hardness increases with decreasing periodicity and approaches the maximum of 6.36 GPa at the periodicity of 4 nm. The peak hardness is 1.51 times mixture value. The experimental results are well explained by the dislocation-image force-based model developed by Lehoczky.展开更多
RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission ele...RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission electron microscope(TEM) hot stage, and were studied by Xray diffraction(XRD) after annealing under vacuum. It was found that, annealing at temperature≤200 ℃ for a long time(~300 min), the amorphous state and the modulated structure of asdeposited films remained basically unchanged. It is suggested that RE/Fe multilayers are stable at temperature up to 200 ℃.〖HS*2]展开更多
Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar st...Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar structure, interface morphology, and metastable phase presented at the interface of the multilayer system strongly depend on the bilayer thickness (Lambda). For high period multilayers, the waviness wavelength of interfaces is about two times broader than the column diameter. For a sample with Lambda =30 nm, its column width and waviness wavelength was about 80, and 190 nm, respectively. Both of them decreased with the reduction of Lambda, so as to nearly equal values of column diameter and waviness wavelength were obtained. The Fe and Ti grains of both 30 nm and 6 nm multilayers are polycrystalline, and have a textured structure. In short bilayer thickness (Lambda =6 nm), the intermetallic compound Fe2Ti was presented at the interfaces due to solid state reaction; for Lambda =2 nm, amorphous phase Ti-rich layer was formed at the interfaces, resulting in a sharp interface multilayer structure.展开更多
Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation ...Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).展开更多
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
Magnetic properties and microstructure of Fe/RE multilayers(thickness of Fe single layers less than or equal to 2.0 nm) both as-deposited state and after annealing( T greater than or equal to 473 K) were studied, and ...Magnetic properties and microstructure of Fe/RE multilayers(thickness of Fe single layers less than or equal to 2.0 nm) both as-deposited state and after annealing( T greater than or equal to 473 K) were studied, and the reason of the change of magnetic properties was analyzed. The Fe single layers are considered to be composed of insular Fe domains in as-deposited films. Super-paramagnetic nature of the Fe domains of small size causes the films to exhibit paramagnetism. During annealing the growth of Fe domains results in the transformation of films from paramagnetic into ferromagnetic, which leads to the increase in H-c and M-s.展开更多
基金Projects(50871060, 50772055) supported by the National Natural Science Foundation of ChinaProject(2007AA03Z426) supported by High-tech Research and Development Program of China
文摘Ag/Fe multilayers with well compositional modulation periodicity of 4-60 nm were prepared at room temperature by evaporation deposition using an ultra high vacuum (UHV) chamber. Their microstructure and hardness were investigated using XRD, TEM and nanoindentation. The fcc/bcc type multilayers show a textured polycrystalline growth with Ag (111) and Fe (110) in Ag layers and Fe layers, respectively. The hardness increases with decreasing periodicity and approaches the maximum of 6.36 GPa at the periodicity of 4 nm. The peak hardness is 1.51 times mixture value. The experimental results are well explained by the dislocation-image force-based model developed by Lehoczky.
文摘RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission electron microscope(TEM) hot stage, and were studied by Xray diffraction(XRD) after annealing under vacuum. It was found that, annealing at temperature≤200 ℃ for a long time(~300 min), the amorphous state and the modulated structure of asdeposited films remained basically unchanged. It is suggested that RE/Fe multilayers are stable at temperature up to 200 ℃.〖HS*2]
基金Financial support from National Natural Science Foundation of China and the Ministry of Science&Technology of China(Grant No.(1999064505)is acknowledged.
文摘Fe/Ti multilayers with different modulation wavelengths (Lambda) prepared by r.f. sputtering has been investigated by using cross sectional transmission electron microscopy (XTEM). It was observed that the columnar structure, interface morphology, and metastable phase presented at the interface of the multilayer system strongly depend on the bilayer thickness (Lambda). For high period multilayers, the waviness wavelength of interfaces is about two times broader than the column diameter. For a sample with Lambda =30 nm, its column width and waviness wavelength was about 80, and 190 nm, respectively. Both of them decreased with the reduction of Lambda, so as to nearly equal values of column diameter and waviness wavelength were obtained. The Fe and Ti grains of both 30 nm and 6 nm multilayers are polycrystalline, and have a textured structure. In short bilayer thickness (Lambda =6 nm), the intermetallic compound Fe2Ti was presented at the interfaces due to solid state reaction; for Lambda =2 nm, amorphous phase Ti-rich layer was formed at the interfaces, resulting in a sharp interface multilayer structure.
文摘Fe/C multilayer thin films were deposited by magnetron sputtering. Small angle X-ray diffraction measurements show very well periodicity of the samples. The modulation period determined from a modified Bragg equation agrees well with that determined from deposition rate. The interfacial roughness parameter ξof several samples calculated by X-ray diffraction is between 3.5(?) and 5.6(?).
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
文摘Magnetic properties and microstructure of Fe/RE multilayers(thickness of Fe single layers less than or equal to 2.0 nm) both as-deposited state and after annealing( T greater than or equal to 473 K) were studied, and the reason of the change of magnetic properties was analyzed. The Fe single layers are considered to be composed of insular Fe domains in as-deposited films. Super-paramagnetic nature of the Fe domains of small size causes the films to exhibit paramagnetism. During annealing the growth of Fe domains results in the transformation of films from paramagnetic into ferromagnetic, which leads to the increase in H-c and M-s.