The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implanta...The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implantation. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and the substrate was exposed. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. Spallation mainly occurred between two layers of the scale on the 1 x 10(17)Y ions/cm(2)-implanted alloy. The results indicate the main reason that the adhesion of alumina scale was improved by yttrium addition lies in that yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface segregation. Another reason is that the growth mechanism of alumina scale was changed by yttrium addition.展开更多
The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning...The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)] (Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrOE- YEO3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrOE- Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.展开更多
The influence of Ce implantation into preformed scales with a dose of 1×1017 ions/cm2 on the subsequent oxidation behavior of GH128 alloy at 1 000 ℃ in air was investigated. The pre-oxidation was carried out at ...The influence of Ce implantation into preformed scales with a dose of 1×1017 ions/cm2 on the subsequent oxidation behavior of GH128 alloy at 1 000 ℃ in air was investigated. The pre-oxidation was carried out at 1 000 ℃ in air for 1 h and 5 h respectively. Cr2O3, NiO and NiCr2O4 formed on the surface of all specimens. Ce implantation decreased the subsequent oxidation rate of both the alloy and the 1 h pre-oxidized alloy, however, had no effect on that of the 5 h pre-oxidized alloy. The beneficial effect was most obvious in the directly implanted alloy. During the cyclic oxidation for 600 h, Ce implantation for all specimens with or without preferential oxidation played a similar beneficial effect on the oxide spallation resistance. The results indicate that Ce incorporated into the oxide scales affects the diffusion of the reaction species to some extent, the wavy interface and small grain structure make a significant contribution to improving the spallation resistance of the oxide scales.展开更多
The 1100 degreesC isothermal oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium addition was studied by means of thermogravimetric analysis, scanning electron microscopy and energy dispersive X-ray analysis. ...The 1100 degreesC isothermal oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium addition was studied by means of thermogravimetric analysis, scanning electron microscopy and energy dispersive X-ray analysis. Yttrium was added to this alloy in the forms of metallic addition, yttrium oxide and ion implant. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and exposed the substrate. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. The scale adhesion was also improved by 1x10(17)Y(+)/cm(2)-implantation. The results indicate the convoluted morphology of the scale on Fe-23Cr-5Al-0.21Ti alloy is related to the growth mechanism of the alumina scale, and the spallation of the scale is related to sulfur segregation at the scale/alloy interface. The main reason that the adhesion of alumina scale is improved by yttrium addition lies in the following. Yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface from segregation. Another reason is that the growth mechanism of alumina scale is changed by yttrium addition.展开更多
To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the back...To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250℃were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron micros- copy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructttre of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250℃. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250℃. The oxidation mechanism at 1250℃ is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.展开更多
The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by d...The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by diffusion.The scale is composed of Cr_2O_3 and spinel(Fe,Mn)O·Cr_2O_3 and the oxide whisker,are spinel(Fe,Mn)O·Cr_2O_3.展开更多
The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5%(mole fraction) aluminium,one Fe-rich and one Cu-rich, has been studied at 900℃in 1×105 Pa pure oxygen. The Fe-rich Fe-15Cu-5Al alloy pre...The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5%(mole fraction) aluminium,one Fe-rich and one Cu-rich, has been studied at 900℃in 1×105 Pa pure oxygen. The Fe-rich Fe-15Cu-5Al alloy presents two quasi-parabolic stages, with a large decrease of the parabolic rate constant after about 50 min. The presence of 5% Al greatly reduces the oxidation rate of this alloy with respect to a binary Fe-Cu alloy of similar composition by forming an external protective Al2O3 layer, which is present near the scale/alloy interface. Due to the high stress-growth effect, this thin Al2O3 layer cannot completely prevent further oxidation of the alloy underneath. On the contrary, the Cu-rich Fe-85Cu-5Al alloy presents a single parabolic stage and forms a thick and porous external scale, coupled to the internal oxidation of Fe and Al. As a result, the oxidation of Cu-rich alloy at 900℃is much faster than that of the Fe-rich alloy.展开更多
The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5% Al(mole fraction), one Fe-rich and one Cu-rich, were studied at 700℃in 1×105 Pa pure oxygen. The Fe-rich alloy (Fe-15Cu-5Al) shows two q...The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5% Al(mole fraction), one Fe-rich and one Cu-rich, were studied at 700℃in 1×105 Pa pure oxygen. The Fe-rich alloy (Fe-15Cu-5Al) shows two quasi-parabolic stages, with a large increase of the parabolic rate constant after about 4 h. The presence of 5% Al does not change greatly the oxidation rate of Fe-15Cu-5Al with respect to a binary Fe-Cu alloy of similar composition, which was quite different from the situation of the same alloys oxidized at 800℃. Oxidation of Fe-15Cu-5Al at 700℃produced an outer layer of iron oxides and an inner layer containing a mixture of copper metal, iron and aluminium oxide. On the contrary, the Cu-rich Fe-85Cu-5Al alloy presents a rather irregular kinetic behavior, with formation of an inner continuous alumina thin layer and a rather irregular outer layer. The outer layer with a rather irregular thickness was mainly composed of a matrix of copper oxides plus some aluminium and iron oxides presenting in the deep part of the layer at certain locations. As a result of the formation of a protective alumina layer, the presence of 5% Al greatly reduced the oxidation rate of Fe-85Cu-5Al with respect to a binary Fe-Cu alloy of similar composition, which was also quite different from the situation of the same alloys oxidized at 800℃. Moreover, the oxidation rate at 700℃of the Fe-85Cu-5Al alloy was much lower than that of Fe-15Cu-5Al alloy due to the same reason..展开更多
The high-temperature oxidation behavior of Fe-5 wt% Cr alloys was investigated in both N_2+5 vol% H_2 O and N2+21 vol% O_2+5 vol% H_2 O atmospheres at 900-1000 ℃ for 120 min by the thermogravimetric analysis(TGA). Th...The high-temperature oxidation behavior of Fe-5 wt% Cr alloys was investigated in both N_2+5 vol% H_2 O and N2+21 vol% O_2+5 vol% H_2 O atmospheres at 900-1000 ℃ for 120 min by the thermogravimetric analysis(TGA). The oxidation kinetics, phase composition and cross-sectional microstructure of the oxide scale were contrastively analyzed in both environments. Also, the phase composition of oxide scale was measured by X-ray diffraction(XRD). The cross-sectional microstructure and the interface elements distribution were studied by electron probe microanalysis(EPMA). The experimental results demonstrated that the growth rate and the mass gain of the oxide scale in the N_2+5 vol% H_2 O atmosphere were both significantly lower than the growth rate and the mass gain in the N_2+21 vol% O_2+5 vol% H_2 O atmosphere. The apparent layer structure of the oxide scale could be observed in an oxygen-enriched environment and did not appear in a pure water vapor without oxygen. In addition, the inner oxide layer growth mechanisms and the outward diffusion of the metal cations were introduced in the atmosphere of N_2+5 vol% H_2 O. Consequently, the effects of temperature and humid atmosphere on the Fe-Cr spinal scale evolution were also discussed.展开更多
An oxidation resistant Al-Cu-Fe quasicrystalline coating was fabricated on substrate of Ti alloy by low pressure plasma spraying (LPPS) method. As-sprayed Al-Cu-Fe coating has a rapidly solidified lamellar microstruct...An oxidation resistant Al-Cu-Fe quasicrystalline coating was fabricated on substrate of Ti alloy by low pressure plasma spraying (LPPS) method. As-sprayed Al-Cu-Fe coating has a rapidly solidified lamellar microstructure consisting of quasicrystalline phase and crystalline phase. The formation of quasicrystalline coating is related to the annealing. The results from the ox!dat!on experiments showed that Al-Cu-Fe quasicrystalline coating improved the oxidation resistance of Ti-base alloys. During the oxidation period there is no evident spallation of the coating from the substrate. Oxide formed on the surface of Al-Cu-Fe quasicrystalline coating after oxidation consisted of Al2O3. Oxidation occurs Ieading to a change of concentration and phase transformation in the coating surface. Selective oxidation of AI transforms the quasicrystalline phase into the phase.展开更多
Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically inves...Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically investigated.The results indicated that the appropriate Ce addition decreased the recalescence temperature and growth temperature of Al−Fe eutectic structure,improved the morphology and distribution of Fe-containing phase,and simultaneously increased the conductivity and mechanical properties.The annealed treatment improved the thermal conductivity of these alloys due to the decreasing concentration of point defects.Rolling process further broke up the coarser Fe-containing phases into finer particles and made the secondary phases uniformly distributed in theα(Al)matrix.After subsequent annealing treatment and rolling deformation,the thermal conductivity,ultimate tensile strength and hardness of the Al−2%Fe−0.3%Ce(mass fraction)alloy reached 226 W/(m·K),(182±1.4)MPa and HBW(49.5±1.7),respectively.展开更多
The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures ...The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.展开更多
The microstructures of liquid and amorphous Al 90 Fe 5Ce 5 alloys were studied by X ray diffraction (XRD), and the crystalline behavior of the amorphous alloy was also investigated by differential scanning calorimetry...The microstructures of liquid and amorphous Al 90 Fe 5Ce 5 alloys were studied by X ray diffraction (XRD), and the crystalline behavior of the amorphous alloy was also investigated by differential scanning calorimetry (DSC). The distinct pre peaks were found on the structure factors of the liquid and amorphous alloys. The quenching temperature affects the pre peak area, but does not affect its position. The reduction of quenching temperature decreases the crystallization temperature and the activation energy of the Al Fe Ce amorphous alloy. Quenched from 1 050 ℃, a novel structure with a fine dispersion of Al nanophase particles homogeneously distributed in the amorphous matrix was obtained. And the sensitivity of the Al Fe Ce amorphous alloy to the quenching temperature reflects the micro inhomogeneity of the melt.展开更多
We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio...We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.展开更多
The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It is found that the prepeak position in X-ray diffraction intens...The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.展开更多
Rapidly solidified Al 8Fe 4Ce alloy was prepared by melt spinning.As quenched and as annealed microstructures were studied by TEM and energy dispersive spectrum analysis.The microhardness of the alloy at different...Rapidly solidified Al 8Fe 4Ce alloy was prepared by melt spinning.As quenched and as annealed microstructures were studied by TEM and energy dispersive spectrum analysis.The microhardness of the alloy at different annealing temperature was measured.The results obtained indicated that as quenched microstructure varied with different cooling rates.The microstructure annealed at 300℃ was much the same as that of the as quenched.The dispersed phases at grain boundary of the microstructure annealed at 400℃ became coarsening.After annealing at 450℃ for 2 hours,the primary phase and the intercellular dispersed phases,metastable phase Al 6Fe and Al 20 Fe 5Ce respectively,coarsened further.The soften temperature was deduced at over 300℃ by measuring microhardness.展开更多
文摘The 1100 degreesC cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implantation. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and the substrate was exposed. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. Spallation mainly occurred between two layers of the scale on the 1 x 10(17)Y ions/cm(2)-implanted alloy. The results indicate the main reason that the adhesion of alumina scale was improved by yttrium addition lies in that yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface segregation. Another reason is that the growth mechanism of alumina scale was changed by yttrium addition.
文摘The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)] (Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrOE- YEO3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrOE- Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.
基金Project(50571106) supported by the National Natural Science Foundation of China
文摘The influence of Ce implantation into preformed scales with a dose of 1×1017 ions/cm2 on the subsequent oxidation behavior of GH128 alloy at 1 000 ℃ in air was investigated. The pre-oxidation was carried out at 1 000 ℃ in air for 1 h and 5 h respectively. Cr2O3, NiO and NiCr2O4 formed on the surface of all specimens. Ce implantation decreased the subsequent oxidation rate of both the alloy and the 1 h pre-oxidized alloy, however, had no effect on that of the 5 h pre-oxidized alloy. The beneficial effect was most obvious in the directly implanted alloy. During the cyclic oxidation for 600 h, Ce implantation for all specimens with or without preferential oxidation played a similar beneficial effect on the oxide spallation resistance. The results indicate that Ce incorporated into the oxide scales affects the diffusion of the reaction species to some extent, the wavy interface and small grain structure make a significant contribution to improving the spallation resistance of the oxide scales.
文摘The 1100 degreesC isothermal oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium addition was studied by means of thermogravimetric analysis, scanning electron microscopy and energy dispersive X-ray analysis. Yttrium was added to this alloy in the forms of metallic addition, yttrium oxide and ion implant. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and exposed the substrate. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. The scale adhesion was also improved by 1x10(17)Y(+)/cm(2)-implantation. The results indicate the convoluted morphology of the scale on Fe-23Cr-5Al-0.21Ti alloy is related to the growth mechanism of the alumina scale, and the spallation of the scale is related to sulfur segregation at the scale/alloy interface. The main reason that the adhesion of alumina scale is improved by yttrium addition lies in the following. Yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface from segregation. Another reason is that the growth mechanism of alumina scale is changed by yttrium addition.
文摘To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250℃were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron micros- copy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructttre of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250℃. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250℃. The oxidation mechanism at 1250℃ is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.
文摘The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by diffusion.The scale is composed of Cr_2O_3 and spinel(Fe,Mn)O·Cr_2O_3 and the oxide whisker,are spinel(Fe,Mn)O·Cr_2O_3.
基金Project(KF0610) supported by the Open Project Program of Key Laboratory of Low Dimensional Materials and Application Technology (Xiangtan University), Ministry of Education, ChinaProject ([2006]245) supported by Science and Technology Research Item of Jiangxi Provincial Department of Education, China
文摘The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5%(mole fraction) aluminium,one Fe-rich and one Cu-rich, has been studied at 900℃in 1×105 Pa pure oxygen. The Fe-rich Fe-15Cu-5Al alloy presents two quasi-parabolic stages, with a large decrease of the parabolic rate constant after about 50 min. The presence of 5% Al greatly reduces the oxidation rate of this alloy with respect to a binary Fe-Cu alloy of similar composition by forming an external protective Al2O3 layer, which is present near the scale/alloy interface. Due to the high stress-growth effect, this thin Al2O3 layer cannot completely prevent further oxidation of the alloy underneath. On the contrary, the Cu-rich Fe-85Cu-5Al alloy presents a single parabolic stage and forms a thick and porous external scale, coupled to the internal oxidation of Fe and Al. As a result, the oxidation of Cu-rich alloy at 900℃is much faster than that of the Fe-rich alloy.
基金Projects (50071058, 50271079) supported by the National Natural Science Foundation of China Project ([2006]245) supported by Science and Technology Research Item of Jiangxi Provincial Department of Education
文摘The oxidation of two two-phase ternary Fe-Cu-Al alloys containing about 5% Al(mole fraction), one Fe-rich and one Cu-rich, were studied at 700℃in 1×105 Pa pure oxygen. The Fe-rich alloy (Fe-15Cu-5Al) shows two quasi-parabolic stages, with a large increase of the parabolic rate constant after about 4 h. The presence of 5% Al does not change greatly the oxidation rate of Fe-15Cu-5Al with respect to a binary Fe-Cu alloy of similar composition, which was quite different from the situation of the same alloys oxidized at 800℃. Oxidation of Fe-15Cu-5Al at 700℃produced an outer layer of iron oxides and an inner layer containing a mixture of copper metal, iron and aluminium oxide. On the contrary, the Cu-rich Fe-85Cu-5Al alloy presents a rather irregular kinetic behavior, with formation of an inner continuous alumina thin layer and a rather irregular outer layer. The outer layer with a rather irregular thickness was mainly composed of a matrix of copper oxides plus some aluminium and iron oxides presenting in the deep part of the layer at certain locations. As a result of the formation of a protective alumina layer, the presence of 5% Al greatly reduced the oxidation rate of Fe-85Cu-5Al with respect to a binary Fe-Cu alloy of similar composition, which was also quite different from the situation of the same alloys oxidized at 800℃. Moreover, the oxidation rate at 700℃of the Fe-85Cu-5Al alloy was much lower than that of Fe-15Cu-5Al alloy due to the same reason..
基金Funded by the National Nature Science Foundation of China(No.U1660117)the National Science and Technology Pillar Program of China(No.2011BAE13B04)
文摘The high-temperature oxidation behavior of Fe-5 wt% Cr alloys was investigated in both N_2+5 vol% H_2 O and N2+21 vol% O_2+5 vol% H_2 O atmospheres at 900-1000 ℃ for 120 min by the thermogravimetric analysis(TGA). The oxidation kinetics, phase composition and cross-sectional microstructure of the oxide scale were contrastively analyzed in both environments. Also, the phase composition of oxide scale was measured by X-ray diffraction(XRD). The cross-sectional microstructure and the interface elements distribution were studied by electron probe microanalysis(EPMA). The experimental results demonstrated that the growth rate and the mass gain of the oxide scale in the N_2+5 vol% H_2 O atmosphere were both significantly lower than the growth rate and the mass gain in the N_2+21 vol% O_2+5 vol% H_2 O atmosphere. The apparent layer structure of the oxide scale could be observed in an oxygen-enriched environment and did not appear in a pure water vapor without oxygen. In addition, the inner oxide layer growth mechanisms and the outward diffusion of the metal cations were introduced in the atmosphere of N_2+5 vol% H_2 O. Consequently, the effects of temperature and humid atmosphere on the Fe-Cr spinal scale evolution were also discussed.
文摘An oxidation resistant Al-Cu-Fe quasicrystalline coating was fabricated on substrate of Ti alloy by low pressure plasma spraying (LPPS) method. As-sprayed Al-Cu-Fe coating has a rapidly solidified lamellar microstructure consisting of quasicrystalline phase and crystalline phase. The formation of quasicrystalline coating is related to the annealing. The results from the ox!dat!on experiments showed that Al-Cu-Fe quasicrystalline coating improved the oxidation resistance of Ti-base alloys. During the oxidation period there is no evident spallation of the coating from the substrate. Oxide formed on the surface of Al-Cu-Fe quasicrystalline coating after oxidation consisted of Al2O3. Oxidation occurs Ieading to a change of concentration and phase transformation in the coating surface. Selective oxidation of AI transforms the quasicrystalline phase into the phase.
基金financially supported by the National Natural Science Foundation of China(No.52174363)the GDAS Project of Science and Technology Development,China(No.2019GDASYL-0203002)+2 种基金the Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the Science and Technology Project of Zhaoqing City,China(Nos.2021C003,2018K006)the Development of Key Technologies for Material and Microstructure Control of High Thermal Conductivity Casting Aluminum Alloy,China(No.2014A030313221)。
文摘Ce element was introduced to modify Al−2%Fe(mass fraction)binary alloy.The microstructures,crystallization behavior,electrical/thermal conductivities and mechanical properties of these alloys were systematically investigated.The results indicated that the appropriate Ce addition decreased the recalescence temperature and growth temperature of Al−Fe eutectic structure,improved the morphology and distribution of Fe-containing phase,and simultaneously increased the conductivity and mechanical properties.The annealed treatment improved the thermal conductivity of these alloys due to the decreasing concentration of point defects.Rolling process further broke up the coarser Fe-containing phases into finer particles and made the secondary phases uniformly distributed in theα(Al)matrix.After subsequent annealing treatment and rolling deformation,the thermal conductivity,ultimate tensile strength and hardness of the Al−2%Fe−0.3%Ce(mass fraction)alloy reached 226 W/(m·K),(182±1.4)MPa and HBW(49.5±1.7),respectively.
基金financial supports from National Natural Science Foundation of China(Nos.51775334,51771115,U2037601)Research Program of Joint Research Center of Advanced Spaceflight Technologies,China(No.USCAST2020-14)。
文摘The microstructure,mechanical properties and flame resistance behavior of the AZ91−1Ce alloys with different Ca additions were firstly investigated.Then,the effect of processing parameters,including applied pressures and rotation speeds,on the microstructure and mechanical properties of the rheo-squeeze casting AZ91−1Ce−2Ca alloy was studied.The results indicate that with the increase of Ca content,the microstructure is refined and the flame resistance of the AZ91−1Ce−xCa alloys increases.But when the Ca content exceeds 1 wt.%,with the Ca content increasing,the mechanical properties of the AZ91−1Ce−xCa alloys reduce rapidly.For rheo-squeeze casting process,the increase of applied pressure and rotation speed can both bring about significant refinement in the microstructure of the AZ91−1Ce−2Ca alloy and reduction of the porosity,so the mechanical properties increase.Compared to conventional casting,the AZ91−1Ce alloy with the addition of 2 wt.%Ca by rheo-squeeze casting not only guarantees the oxidation resistance(801℃),but also improves mechanical properties.
文摘The microstructures of liquid and amorphous Al 90 Fe 5Ce 5 alloys were studied by X ray diffraction (XRD), and the crystalline behavior of the amorphous alloy was also investigated by differential scanning calorimetry (DSC). The distinct pre peaks were found on the structure factors of the liquid and amorphous alloys. The quenching temperature affects the pre peak area, but does not affect its position. The reduction of quenching temperature decreases the crystallization temperature and the activation energy of the Al Fe Ce amorphous alloy. Quenched from 1 050 ℃, a novel structure with a fine dispersion of Al nanophase particles homogeneously distributed in the amorphous matrix was obtained. And the sensitivity of the Al Fe Ce amorphous alloy to the quenching temperature reflects the micro inhomogeneity of the melt.
基金supported by Major Scientific and Technological Project of Bingtuan (No.2018AA002)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.
文摘The chemical short-range order of Al-Fe-Ce amorphous alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It is found that the prepeak position in X-ray diffraction intensity curve shifts to higher angles as the content of Fe increases, but it shifts to smaller angles as the content of Ce increases. The crystallization character of the amorphous alloy changes with the variation of the content of Fe and Ce. Ce can improve the interaction between atoms and the capacity of compound formation, so it is favorable to Al-based glass formability.
文摘Rapidly solidified Al 8Fe 4Ce alloy was prepared by melt spinning.As quenched and as annealed microstructures were studied by TEM and energy dispersive spectrum analysis.The microhardness of the alloy at different annealing temperature was measured.The results obtained indicated that as quenched microstructure varied with different cooling rates.The microstructure annealed at 300℃ was much the same as that of the as quenched.The dispersed phases at grain boundary of the microstructure annealed at 400℃ became coarsening.After annealing at 450℃ for 2 hours,the primary phase and the intercellular dispersed phases,metastable phase Al 6Fe and Al 20 Fe 5Ce respectively,coarsened further.The soften temperature was deduced at over 300℃ by measuring microhardness.