We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio...We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.展开更多
The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debata...The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..展开更多
为了在大气条件下利用 Fe- Ti- C熔体中 Ti C的合成反应制备原位 (in situ) Ti CP/Fe复合材料 ,研究了三种覆盖剂对熔体中 Ti元素氧化烧损率的影响 ,并分析了所得复合材料的组织和性能。结果表明 :采用所开发的混合盐型覆盖剂能在大气...为了在大气条件下利用 Fe- Ti- C熔体中 Ti C的合成反应制备原位 (in situ) Ti CP/Fe复合材料 ,研究了三种覆盖剂对熔体中 Ti元素氧化烧损率的影响 ,并分析了所得复合材料的组织和性能。结果表明 :采用所开发的混合盐型覆盖剂能在大气条件下制备出原位 Ti CP/Fe复合材料 ,且原位合成的 Ti C颗粒尺寸细小、分布均匀 ,从而使制备的复合材料特别是经淬火处理后的复合材料具有较高的力学性能。展开更多
基金supported by Major Scientific and Technological Project of Bingtuan (No.2018AA002)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.
基金supported by the Project of the National Natural Science Foundation of China (Grant No. 41572093, 41072083, 40602011)the Open Foundation of Shangdong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineralthe Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology
文摘The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..
文摘为了在大气条件下利用 Fe- Ti- C熔体中 Ti C的合成反应制备原位 (in situ) Ti CP/Fe复合材料 ,研究了三种覆盖剂对熔体中 Ti元素氧化烧损率的影响 ,并分析了所得复合材料的组织和性能。结果表明 :采用所开发的混合盐型覆盖剂能在大气条件下制备出原位 Ti CP/Fe复合材料 ,且原位合成的 Ti C颗粒尺寸细小、分布均匀 ,从而使制备的复合材料特别是经淬火处理后的复合材料具有较高的力学性能。