Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains ch...Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metal-organic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn^(3+)/Mn^(4+) and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(-COO-)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·m^(-2)·h^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.展开更多
A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-tre...A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 μg/L of arsenic was collected from suburb of Beijing. Arsenic(Ⅲ) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 μg/L were produced in the operation period of four months. The regeneration of FMBO(1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO(1:1 )-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO(1 : 1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO(1:1)- diatomite had high oxidation ability and exhibited strong adsorptive filtration.展开更多
Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The e...Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.展开更多
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf...Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.展开更多
We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio...We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.展开更多
The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were ...The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were obtained. The activation energy. H_2 and CO dependenceorders for ethanol and acetaldehyde formation differed greatly, the large difference seemed to implythat they were formed through different intermediates.展开更多
Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides ...Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides species precipitating from the hydrothermal fluid were SiO2, Fe(OH)3, Fe3(OH)8, Mn3O4, and Mn2O3at 25℃. During mixing of hydrothermal fluid with seawater, SiO2 precipitated earlier than Fe-Mn-oxyhydroxides because of the lower stability boundary. Then Fe(OH)2 precipitated first, followed by Fe3(OH)8 and Fe(OH)3, and last, small amounts of Mn3O4 and Mn2O3 precipitated. Fe(OH)3was readily de-posited in alkaline solution with little influence by Eh. There were many Si-Fe-Mn-concentric particles in the polished sections of the massive precipitates collected from PACMANUS. In the concentric nucleus and ellipsoid, Si oxides precipitated first before the hydrothermal fluid had mixed with seawater. In the concen-tric nucleus, after the precipitation of Si oxides, the increase of pH and Eh promoted the precipitation of Mn oxides around the Si oxides. In the large ellipsoid, the precipitation of Fe was divided into two periods. In the early period, increase of pH value of hydrothermal fluid produced by low-temperature convection and an input of a small volume of seawater promoted a small amount of Fe(OH)3 to precipitate in the Si-rich core. In the late period, after complete mixing with seawater and the resultant fluid was close to neutral or slightly alkaline in pH, Fe(OH)3was easily precipitated from the solution and distributed around the Si-rich core.展开更多
Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.44...Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.440; 207pb/204pb=lS.503-15.560; 206pb/204pb=lS.682-18.783. s7sr/sSSr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%-83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2℃ to 72.2℃ and the hydrothermal activities were unstable when the samples precipitated. The eNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Ph isotopic compositions of most samples show minor variability except Sample #9-2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower 28pb/204pb and 207pb/204pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.展开更多
基金supported by the National Key Research and Development Program(2021YFB3801303)the National Natural Science Foundation of China(22408161,21921006)+1 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2022033-3)the State Key Laboratory of Materials-Oriented Chemical Engineering(SKL-MCE-22A03).
文摘Two-dimensional(2D)catalytic ozonation membranes are promising for the treatment of micropollutants in wastewater due to simultaneous ozone-catalyzed degradation and membrane filtration processes.However,it remains challenging for 2D catalytic ozonation membranes to efficiently degrade micropollutants due to low mass-transfer efficiency and poor catalytic activity.Herein,Fe/Mn bimetallic metal-organic framework(MOF)intercalated lamellar MnO_(2) membranes with fast and robust ozone-catalyzed mass-transfer channels were developed on the surface of the hollow fiber ceramic membrane(HFCM)to obtain 2D Fe/Mn-MOF@MnO_(2)-HFCM for efficiently degrading micropollutants in wastewater.The intercalation of Fe/Mn-MOF expanded the interlayer spacing of the MnO_(2) membrane,thereby providing abundant transport channels for rapid passage of water.More notably,the Fe/Mn-MOF provided enriched reactive sites as well as high electron transfer efficiency based on the redox cycling between Mn^(3+)/Mn^(4+) and Fe^(2+)/Fe^(3+),ensuring the effective catalytic oxidative degradation of micropollutants including tetracycline hydrochloride(TCH),methylene blue,and methyl blue.Moreover,the carboxyl groups on the MOF formed covalent bonds(-COO-)with the hydroxyl groups in MnO_(2) between layers,which increased the interaction between MnO_(2) nanosheets to form stable interlayer channels.Specifically,the optimal composite membrane achieved a high removal rate of TCH micropollutant(93.4%),high water treatment capacity(282 L·m^(-2)·h^(-1)·MPa^(-1)),and excellent longterm stability(1200 min).This study provides a simple and easily scalable strategy to construct fast,efficient,and stable 2D catalytic mass-transfer channels for the efficient treatment of micropollutants in wastewater.
基金supported by the National Natural Science Foundation of China (No.50608067)the Foundation for Creative Research Groups of China (No.50621804)
文摘A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 μg/L of arsenic was collected from suburb of Beijing. Arsenic(Ⅲ) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 μg/L were produced in the operation period of four months. The regeneration of FMBO(1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO(1:1 )-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO(1 : 1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO(1:1)- diatomite had high oxidation ability and exhibited strong adsorptive filtration.
基金Projects(51334008,51304243,51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.
基金Supported by the National Natural Science Foundation of China(No.50879025)
文摘Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments.
基金supported by Major Scientific and Technological Project of Bingtuan (No.2018AA002)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.
基金This work was financially by the Chinese Science and Technology Ministry (Grant No.G1999022404)
文摘The kinetics of CO hydrogenation for the synthesis of C_2 oxygenates overRh-Mn-Li-Fe/SiO_2 was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde,C'2 oxygenates, methanol and methane were obtained. The activation energy. H_2 and CO dependenceorders for ethanol and acetaldehyde formation differed greatly, the large difference seemed to implythat they were formed through different intermediates.
基金The National Key Basic Research Program of China under contract Nos 2013CB429700the National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-12-R-05+3 种基金the National Natural Science Foundation of China under contract Nos 41325021,40830849,40976027 and 41476044the Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract Nos JQ200913the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11030302the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Utilizing Si, Fe and Mn concentrations within the end-member PACMANUS hydrothermal fluid, Si-Fe-Mn-H2O Pourbaix diagrams were constructed at 300℃and 25℃. ThePourbaix diagrams show that the main Si, Fe and Mn oxides species precipitating from the hydrothermal fluid were SiO2, Fe(OH)3, Fe3(OH)8, Mn3O4, and Mn2O3at 25℃. During mixing of hydrothermal fluid with seawater, SiO2 precipitated earlier than Fe-Mn-oxyhydroxides because of the lower stability boundary. Then Fe(OH)2 precipitated first, followed by Fe3(OH)8 and Fe(OH)3, and last, small amounts of Mn3O4 and Mn2O3 precipitated. Fe(OH)3was readily de-posited in alkaline solution with little influence by Eh. There were many Si-Fe-Mn-concentric particles in the polished sections of the massive precipitates collected from PACMANUS. In the concentric nucleus and ellipsoid, Si oxides precipitated first before the hydrothermal fluid had mixed with seawater. In the concen-tric nucleus, after the precipitation of Si oxides, the increase of pH and Eh promoted the precipitation of Mn oxides around the Si oxides. In the large ellipsoid, the precipitation of Fe was divided into two periods. In the early period, increase of pH value of hydrothermal fluid produced by low-temperature convection and an input of a small volume of seawater promoted a small amount of Fe(OH)3 to precipitate in the Si-rich core. In the late period, after complete mixing with seawater and the resultant fluid was close to neutral or slightly alkaline in pH, Fe(OH)3was easily precipitated from the solution and distributed around the Si-rich core.
基金The National Key Basic Research Program of China under contract No.2013CB429700the National Special Fund for the 12th Five Year Plan of COMRA under contract No.DY125-12-R-05+3 种基金the National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-11-R-05the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11030302the National Natural Science Foundation of China under contract Nos 41325021,40830849 and 40976027Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No.JQ200913
文摘Si-Fe-Mn-oxyhydroxides dredged at the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field, Eastern Manus Basin, have 87Sr/SSSr=0.708 079-0.708 581; eNd=5.149 833-6.534 826; 208pb/204pb=38.245-38.440; 207pb/204pb=lS.503-15.560; 206pb/204pb=lS.682-18.783. s7sr/sSSr isotope ratios are relatively homogeneous and close to the value of the surrounding seawater (0.709 16). The content of Sr in the samples contributed by seawater was estimated to be 76.7%-83.1% of total amount. The mixing temperature of hydrothermal fluids and seawater were ranging from 53.2℃ to 72.2℃ and the hydrothermal activities were unstable when the samples precipitated. The eNd values of all the samples are positive, which differ from the values of ferromanganese nodules (crusts) with hydrogenic origin. Nd was mainly derived from substrate rocks leached by hydrothermal circulation and preserved the hydrothermal signature. Ph isotopic compositions of most samples show minor variability except Sample #9-2 that has relatively high values of Pb isotopes. The Pb may be derived from the Eastern Manus Basin rocks leached by the hydrothermal fluid. The slightly lower 28pb/204pb and 207pb/204pb values of the samples indicated that the hydrothermal circulation in PACMANUS was not entire and sufficient, or that hydrothermal circulation had transient changes in the past. Si-Fe-Mn-oxyhydroxides in the samples preserved the heterogeneities of local rocks.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。