The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly...The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly desirable, although it still remains challenging. Herein, we report a facile and reliable route to convert ZIF-8 modified by Fe-phenanthroline into Fe-incorporated and N-doped carbon dodecahedron nanoarchitecture(Fe-NCDNA), in which carbon nanosheets are formed in situ as the building blocks with uniform Fe-N-C species decoration. Systematic electrochemical studies demonstrate that the as-synthesized Fe-NCDNA electrocatalyst possesses highly attractive catalytic features toward the ORR in terms of activity and durability in both alkaline and neutral media. The Zn-air battery with the optimal Fe-NCDNA catalyst as the cathode performs impressively, delivering a power density of 184 m W cm^–2 and a specific capacity of 801 m Ah g^–1;thus, it exhibits great competitive advantages over those of the Zn-air devices employing a Pt-based cathode electrocatalyst.展开更多
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金Project (51002128) supported by the National Natural Science Foundation of ChinaProject (2012M511737) supported by the National Science Foundation for Post-Doctor of China
文摘The application of electrocatalysts for the oxygen reduction reaction(ORR) is vital in a variety of energy conversion technologies. Exploring low-cost ORR catalysts with high activity and long-term stability is highly desirable, although it still remains challenging. Herein, we report a facile and reliable route to convert ZIF-8 modified by Fe-phenanthroline into Fe-incorporated and N-doped carbon dodecahedron nanoarchitecture(Fe-NCDNA), in which carbon nanosheets are formed in situ as the building blocks with uniform Fe-N-C species decoration. Systematic electrochemical studies demonstrate that the as-synthesized Fe-NCDNA electrocatalyst possesses highly attractive catalytic features toward the ORR in terms of activity and durability in both alkaline and neutral media. The Zn-air battery with the optimal Fe-NCDNA catalyst as the cathode performs impressively, delivering a power density of 184 m W cm^–2 and a specific capacity of 801 m Ah g^–1;thus, it exhibits great competitive advantages over those of the Zn-air devices employing a Pt-based cathode electrocatalyst.