V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were ...V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.展开更多
基金Project (2006AA068128) supported by the High-tech Research and Development Program of China
文摘V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.
文摘试验采用磁化焙烧-磁选的方法来回收包头稀土尾矿中的Fe。考察了还原球团的粒径、焙烧温度、还原气体的成分、还原气气体流量、焙烧时间对于磁化焙烧回收Fe的影响。在焙烧温度为580℃,CO与CO2的浓度比为40∶60,还原气体气流量为1.2 L·min-1,焙烧时间为60 min的条件下对球团进行磁化焙烧,并将焙烧后的球团进行磨矿,使得-200目的物料占物料总重量的95%。将磨矿后的物料置于磁场强度为233 k A·m-1的磁选管中进行磁选,可以得到品位为60%左右的铁精矿,其铁回收率达到70%左右。