Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 ...Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.展开更多
采用一种改进的共沉淀法制备了纳米磁铁矿(Fe3O4)及Ni2+掺杂磁铁矿(Ni x Fe3-x O4,x=0.1,0.3,0.6),用X-射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对产物进行了表征,用平衡吸附法研究了4种样品对Pb(Ⅱ)离子的吸附...采用一种改进的共沉淀法制备了纳米磁铁矿(Fe3O4)及Ni2+掺杂磁铁矿(Ni x Fe3-x O4,x=0.1,0.3,0.6),用X-射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对产物进行了表征,用平衡吸附法研究了4种样品对Pb(Ⅱ)离子的吸附容量及吸附模型。结果表明,Fe3O4和3种Ni x Fe3-x O4均为近似球形的单相晶质纳米颗粒;与Fe3O4比较,Ni x Fe3-x O4的颗粒尺寸变小、表面电荷零点和pH=5.0时的表面正电荷量降低;样品的孔体积、比表面积和表面分形度以及表面羟基含量都随产物中Ni2+掺杂量的增加而升高。4种样品对Pb(Ⅱ)的等温吸附数据均适合用Langmuir模型拟合(R2=0.9942~0.9858),其相关系数的大小表现为:Fe3O4>Ni0.1Fe2.9O4>Ni0.3Fe2.7O4=Ni0.6Fe2.4O4;Freundlich模型对样品等温吸附Pb(Ⅱ)的实验数据拟合度较低(R2=0.981 3~0.947 7),4种样品的Freundlich相关系数的大小关系与Langmuir相关系数相反。初始pH=5.0时,Fe3O4,Ni0.1Fe2.9O4,Ni0.3Fe2.7O4和Ni0.6Fe2.4O4对Pb(Ⅱ)的最大吸附容量分别为6.02,6.68,7.29和8.34 mg·g-1。可见,Ni x Fe3-x O4(尤其是Ni2+掺杂量较高的产物)对水环境中重金属Pb(Ⅱ)的去除能力明显高于Fe3O4。展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects o...A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.展开更多
基金Projects(5110205551462005)supported by the National Natural Science Foundation of China
文摘Thick-film thermistor with negative temperature coefficient(NTC), low room-temperature resistivity and modest thermistor constant was screen-printed on the alumina substrate by the combination of 30.94III0.04II0.02 B OBi Coa Co with Ba0.5Bi0.5Fe0.9Sn0.1O3. The electrical properties of the thick films were characterized by a digital multimeter, a Keithley 2400 and an impedance analyzer. The results show that with the Ba0.5Bi0.5Fe0.9Sn0.1O3 content increasing from 0.05 to 0.25, the values of room-temperature resistivity, thermistor constant and peak voltage of the thick films increases and are in the ranges of 1.47-26.5 ?·cm, 678-1345 K and 18.9-47.0 V, respectively. The corresponding current at the peak voltage of the thick films decreases and is in the range of 40-240 m A. The impedance spectroscopy measurement demonstrates that the as-prepared thick films show the abnormal electrical heterogeneous microstructure, consisting of high-resistive grains and less resistive grain boundary regions. It can be concluded that the addition of Ba0.5Bi0.5Fe0.9Sn0.1O3 into 30.94III0.04II0.02 Ba Co OBi Co improves the thermistor behavior and but also deteriorates the current characteristics.
文摘采用一种改进的共沉淀法制备了纳米磁铁矿(Fe3O4)及Ni2+掺杂磁铁矿(Ni x Fe3-x O4,x=0.1,0.3,0.6),用X-射线衍射(XRD)、扫描电镜(SEM)、氮气物理性吸附、酸碱滴定等手段对产物进行了表征,用平衡吸附法研究了4种样品对Pb(Ⅱ)离子的吸附容量及吸附模型。结果表明,Fe3O4和3种Ni x Fe3-x O4均为近似球形的单相晶质纳米颗粒;与Fe3O4比较,Ni x Fe3-x O4的颗粒尺寸变小、表面电荷零点和pH=5.0时的表面正电荷量降低;样品的孔体积、比表面积和表面分形度以及表面羟基含量都随产物中Ni2+掺杂量的增加而升高。4种样品对Pb(Ⅱ)的等温吸附数据均适合用Langmuir模型拟合(R2=0.9942~0.9858),其相关系数的大小表现为:Fe3O4>Ni0.1Fe2.9O4>Ni0.3Fe2.7O4=Ni0.6Fe2.4O4;Freundlich模型对样品等温吸附Pb(Ⅱ)的实验数据拟合度较低(R2=0.981 3~0.947 7),4种样品的Freundlich相关系数的大小关系与Langmuir相关系数相反。初始pH=5.0时,Fe3O4,Ni0.1Fe2.9O4,Ni0.3Fe2.7O4和Ni0.6Fe2.4O4对Pb(Ⅱ)的最大吸附容量分别为6.02,6.68,7.29和8.34 mg·g-1。可见,Ni x Fe3-x O4(尤其是Ni2+掺杂量较高的产物)对水环境中重金属Pb(Ⅱ)的去除能力明显高于Fe3O4。
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
基金Supported by the National Natural Science Foundation of China(No.41201487)the Natural Science Foundation of Hebei Province(No.2014202074)
文摘A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g^(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.