The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning...The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)] (Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrOE- YEO3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrOE- Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.展开更多
An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focuse...An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar.Coating layer was fabricated with various process parameters such as laser power,scan rate and fill spacing.Surface quality and coating thickness were measured and analyzed.Three different surface patterns,such as typeⅠ,typeⅡand type Ⅲ,are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing,50-350 mm/s of scan rate and 40 μm of fill spacing,10-150 mm/s of scan rate.The maximum coating thickness is increased with power elevation or scan rate drop,and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.展开更多
文摘The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)] (Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrOE- YEO3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrOE- Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.
基金supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund)grants-in-aid for the National Core Research Center Program from MOST/KOSEF
文摘An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar.Coating layer was fabricated with various process parameters such as laser power,scan rate and fill spacing.Surface quality and coating thickness were measured and analyzed.Three different surface patterns,such as typeⅠ,typeⅡand type Ⅲ,are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing,50-350 mm/s of scan rate and 40 μm of fill spacing,10-150 mm/s of scan rate.The maximum coating thickness is increased with power elevation or scan rate drop,and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.