The hot deformation behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B (TACFB) titanium alloy was investigated using a Gleeble-1500D thermal simulator in the temperature range of 800-950 °C, at constant strain rate from 0.01 ...The hot deformation behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B (TACFB) titanium alloy was investigated using a Gleeble-1500D thermal simulator in the temperature range of 800-950 °C, at constant strain rate from 0.01 s-1 to 10 s-1 and with height reduction of 70%. Flow stress and microstructure evolution during hot compression of TACFB alloy were investigated. The processing map of TACFB alloy was obtained. The results indicate that the hot deformation behavior of TACFB alloy is sensitive to the deformation temperature and strain rate. The peak flow stress decreases with increasing the test temperature and decreasing the strain rate. The constitutive relationship of TACFB alloy was obtained on the base of Arrhenius equations. When the strain rates are higher than 1.0 s-1, the dynamic recrystallization occurs, and the higher the strain rates are, the more the recrystallization is.展开更多
Five Fe-16 Cr-2.5 Mo damping alloys with different Cu contents(0%,0.25%,0.5%,1.0% and 2.0%) were prepared.The microstructure was observed by scanning transmission electron microscopy(STEM) and the damping behavior...Five Fe-16 Cr-2.5 Mo damping alloys with different Cu contents(0%,0.25%,0.5%,1.0% and 2.0%) were prepared.The microstructure was observed by scanning transmission electron microscopy(STEM) and the damping behavior was measured by using a dynamic mechanical analyzer(DMA).The results show that the grain size of experimental alloy with(0.25–1.0%) Cu was refined compared with the 0 Cu alloy.The Cu element is fully dissolved in the matrix and there are no Cu precipitates and carbides observed.Although the internal stress increases because of Cu addition,the damping capacity of the 0.5 Cu and1.0 Cu alloys has been significantly improved.The reason of damping improvement is that the magnetic domain structure is strongly modified.Meanwhile,the strength was improved gradually due to the Cu solid solution strengthening and grain refining.In the 2.0 Cu alloy,lots of Cu-riched particles appeared in the matrix.These Cu precipitates with 10–15 nm in size are spherical and homogeneously distributed,which strongly induce strength improvement through precipitation strengthening.On the contrary,the elongation and impact energy of the 2.0 Cu alloy decrease sharply.In addition,lots of Cu precipitates will significantly decrease the damping capacity by hindering the mobility of domain walls.展开更多
基金Project (2010DFA52280) supported by International Science and Technology CooperationProject (20100470260) supported by China Postdoctoral Science Foundation
文摘The hot deformation behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B (TACFB) titanium alloy was investigated using a Gleeble-1500D thermal simulator in the temperature range of 800-950 °C, at constant strain rate from 0.01 s-1 to 10 s-1 and with height reduction of 70%. Flow stress and microstructure evolution during hot compression of TACFB alloy were investigated. The processing map of TACFB alloy was obtained. The results indicate that the hot deformation behavior of TACFB alloy is sensitive to the deformation temperature and strain rate. The peak flow stress decreases with increasing the test temperature and decreasing the strain rate. The constitutive relationship of TACFB alloy was obtained on the base of Arrhenius equations. When the strain rates are higher than 1.0 s-1, the dynamic recrystallization occurs, and the higher the strain rates are, the more the recrystallization is.
基金financially supported by the National Natural Science Foundation of China (No.51301170)
文摘Five Fe-16 Cr-2.5 Mo damping alloys with different Cu contents(0%,0.25%,0.5%,1.0% and 2.0%) were prepared.The microstructure was observed by scanning transmission electron microscopy(STEM) and the damping behavior was measured by using a dynamic mechanical analyzer(DMA).The results show that the grain size of experimental alloy with(0.25–1.0%) Cu was refined compared with the 0 Cu alloy.The Cu element is fully dissolved in the matrix and there are no Cu precipitates and carbides observed.Although the internal stress increases because of Cu addition,the damping capacity of the 0.5 Cu and1.0 Cu alloys has been significantly improved.The reason of damping improvement is that the magnetic domain structure is strongly modified.Meanwhile,the strength was improved gradually due to the Cu solid solution strengthening and grain refining.In the 2.0 Cu alloy,lots of Cu-riched particles appeared in the matrix.These Cu precipitates with 10–15 nm in size are spherical and homogeneously distributed,which strongly induce strength improvement through precipitation strengthening.On the contrary,the elongation and impact energy of the 2.0 Cu alloy decrease sharply.In addition,lots of Cu precipitates will significantly decrease the damping capacity by hindering the mobility of domain walls.