The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles r...The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.展开更多
Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The re...Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.展开更多
The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides...The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.展开更多
With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deform...With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage展开更多
The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement ...The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement mechanism of the hot ductility was analyzed using a combination of SEM, EDS, and OM. The results indicated that Fe-36Ni invar alloy exhibited poor hot ductility below 1 050℃, which was mainly attributed to weak grain boundaries and the action of grain boundary sliding. However, the alloys with cerium contents of 0. 016% and 0.024% both demonstrated substantial improvement in the hot ductility over the entire testing temperature range. The observed improvement of the hot ductility of the alloy with 0. 016% cerium at 950 ~C and the alloy with 0.024% cerium at 900℃ was associated mainly with the grain boundary strengthening and the restriction of the grain boundary sliding because the addition of cerium reduced the segregation of sulfur at grain boundaries and refined the grain structure. The occurrence and acceleration of dynamic recrystallization were found to be responsible for the high hot ductility of the alloy with 0.016% cerium at 1 000℃ and the alloy with 0. 024% cerium at 950 - 1 000℃ as a result of the refinement of the grain structure by addition of cerium.展开更多
The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) ...The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) respectively formed in the alloy with the addition of Ce, La or mischmetal. Based on the theory of lattice misfit, the lattice misfit between the (0001) surfaces of Ce2O3,Ce2O2S and La2O2S and (100) surface of Fe-36Ni invar alloy were 6.21%, 5.77 % and 5.42 %, respectively, which are relatively low. Therefore, Ce2 O3, La2 O2 S and ( Ce, La) 2 O2 S could serve as the core of heterogeneous nucleation, improve the equiaxed grain ratio, reduce the equiaxed grain size and refine the solidification structure of alloy.展开更多
Considering the effect of intergranular carbides density,a modified model has been proposed to try to suit any common case of the fraction of intergranular carbides to total grain bounda- ry less than I,on the basis o...Considering the effect of intergranular carbides density,a modified model has been proposed to try to suit any common case of the fraction of intergranular carbides to total grain bounda- ry less than I,on the basis of the previous model for the grain boun dary precipitation strengthening.This modified model may by avilable to predict the changes in creep rate and its stress and temperature dependence of alloys due to intergrnular carbides.展开更多
Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of...Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of the alloy was remarkably refined with the addition of 0.05%Ti-0.01%Ce refiners. Not only did the columnar grains become shorter and thinner, but the growth pattern of them changed into staggered growth from linear growth. The alloy had a bad hot ductility below 1050 °C, which was mainly attrib-uted to weaker boundaries and the presence of grain boundary sliding. However, the hot ductility of the alloy was highly enhanced at 850-1000 °C as the addition of 0.05%Ti-0.01%Ce refiners could refine grain sizes, thus hinder grain boundary sliding, strengthen the grain boundary and promote the grain boundary movement. The alloy had a good hot ductility over 1050 °C, dynamic recrys-tallization occurred and was found to be responsible for the better hot ductility. In addition, the average coefficient of thermal ex-pansion of the alloy decreased a little with the addition of 0.05%Ti-0.01%Ce refiners, which met the requirement of material prop-erties.展开更多
Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled spe...Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling T>290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are 30 nm and 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization Bs 0.744 T.展开更多
The microstructure and solute distribution of Pd40Ni40P40 alloy solidified both on board a Chinese retrievable satellite (μg) and on the earth (1g) were studied. It was found that the dendritic primary phase formed u...The microstructure and solute distribution of Pd40Ni40P40 alloy solidified both on board a Chinese retrievable satellite (μg) and on the earth (1g) were studied. It was found that the dendritic primary phase formed under microgravity condition was finer and shorter. In the central area of the sample some asteroidal patterns of the primary phase were present in the microstructure. The primary spacing of the dendrites at the cooling rate of 0.056 K/s was smaller than that measured in the ground-based experiments at the same cooling rate, but almost the same as that cooled at 0.67 K/s on the ground. With these experimental results, mass transport coefficients both in space and on the earth were evaluated.展开更多
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
文摘The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.
基金supported by the National Natural Science Foundation of China(No.19891180)
文摘Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.
文摘The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.
文摘With electron microscopy the investigation on isothermal martensite transformation in an Fe20.5Ni-4.8Mn alloy has been carried out to clarify the effect of austenite state on the transformation, by applying pre-deformation to austenite before isothermal holding. Under the condition without pre-deformation, the isothermal martensite products are lath martensite with {111}fhabit planes. Dislocations in austenite seem to contribute to nucleation of martensite, and in this nascent Stage austenite substructure has no obvious effect on martensite growth. The consequent thickening of martensite laths is apparently influenced by local austenite states, resulting in the changes in orientation, morphology as well as substructure of martensite lath. The kinetics of isothermal martensite transformation is controlled by intedece dislocation determined nucleation of martensite in primary stage, but to a larger extent, by the austenite accommodation for the shape strain of martensite in the thickening Stage
文摘The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement mechanism of the hot ductility was analyzed using a combination of SEM, EDS, and OM. The results indicated that Fe-36Ni invar alloy exhibited poor hot ductility below 1 050℃, which was mainly attributed to weak grain boundaries and the action of grain boundary sliding. However, the alloys with cerium contents of 0. 016% and 0.024% both demonstrated substantial improvement in the hot ductility over the entire testing temperature range. The observed improvement of the hot ductility of the alloy with 0. 016% cerium at 950 ~C and the alloy with 0.024% cerium at 900℃ was associated mainly with the grain boundary strengthening and the restriction of the grain boundary sliding because the addition of cerium reduced the segregation of sulfur at grain boundaries and refined the grain structure. The occurrence and acceleration of dynamic recrystallization were found to be responsible for the high hot ductility of the alloy with 0.016% cerium at 1 000℃ and the alloy with 0. 024% cerium at 950 - 1 000℃ as a result of the refinement of the grain structure by addition of cerium.
文摘The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) respectively formed in the alloy with the addition of Ce, La or mischmetal. Based on the theory of lattice misfit, the lattice misfit between the (0001) surfaces of Ce2O3,Ce2O2S and La2O2S and (100) surface of Fe-36Ni invar alloy were 6.21%, 5.77 % and 5.42 %, respectively, which are relatively low. Therefore, Ce2 O3, La2 O2 S and ( Ce, La) 2 O2 S could serve as the core of heterogeneous nucleation, improve the equiaxed grain ratio, reduce the equiaxed grain size and refine the solidification structure of alloy.
文摘Considering the effect of intergranular carbides density,a modified model has been proposed to try to suit any common case of the fraction of intergranular carbides to total grain bounda- ry less than I,on the basis of the previous model for the grain boun dary precipitation strengthening.This modified model may by avilable to predict the changes in creep rate and its stress and temperature dependence of alloys due to intergrnular carbides.
文摘Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of the alloy was remarkably refined with the addition of 0.05%Ti-0.01%Ce refiners. Not only did the columnar grains become shorter and thinner, but the growth pattern of them changed into staggered growth from linear growth. The alloy had a bad hot ductility below 1050 °C, which was mainly attrib-uted to weaker boundaries and the presence of grain boundary sliding. However, the hot ductility of the alloy was highly enhanced at 850-1000 °C as the addition of 0.05%Ti-0.01%Ce refiners could refine grain sizes, thus hinder grain boundary sliding, strengthen the grain boundary and promote the grain boundary movement. The alloy had a good hot ductility over 1050 °C, dynamic recrys-tallization occurred and was found to be responsible for the better hot ductility. In addition, the average coefficient of thermal ex-pansion of the alloy decreased a little with the addition of 0.05%Ti-0.01%Ce refiners, which met the requirement of material prop-erties.
基金Supported by the Hong Kong Research Grants Council the National Natural Science Foundation of China(Grant No.50861007)Xinjiang University Doctoral Re-search Start-up Grant(Grant No.BS050102)
文摘Nanostructured Fe40Ni40P14B6 alloy ingots of 3―5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling T> 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling T>290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are 30 nm and 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization Bs 0.744 T.
文摘The microstructure and solute distribution of Pd40Ni40P40 alloy solidified both on board a Chinese retrievable satellite (μg) and on the earth (1g) were studied. It was found that the dendritic primary phase formed under microgravity condition was finer and shorter. In the central area of the sample some asteroidal patterns of the primary phase were present in the microstructure. The primary spacing of the dendrites at the cooling rate of 0.056 K/s was smaller than that measured in the ground-based experiments at the same cooling rate, but almost the same as that cooled at 0.67 K/s on the ground. With these experimental results, mass transport coefficients both in space and on the earth were evaluated.