A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with...A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.展开更多
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achiev...Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.展开更多
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro...Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems.展开更多
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ...Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected.展开更多
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega...FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic perfo...Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.展开更多
Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a p...Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a purpose.In this paper,recent advances in lengthscale-dependent scandium (Sc) microalloying effects in Al-Cu model alloys are reviewed.In coarse-grained Al-Cu alloys,the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al_(2)Cu/matrix interface that reduces interfacial energy contribute significantly to θ′precipitation.By grain size refinement to the fine/ultrafine-grained scale,the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries,promoting the desired intragranular θ′precipitation.At nanocrystalline scale,the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu Sc,vacancy)-rich atomic complexes with high thermal stability,outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation.This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.展开更多
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e...The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.展开更多
Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal con...Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal conductivity.Here,we investigate microstructure,mechanical performance,thermal conductivity and metal fluidity of Mg-5Zn(wt.%)alloy after Cu alloying by experimental and simulation methods.First,Mg-5Zn alloy consist ofα-Mg matrix and interdendritic MgZn phases.As the Cu content increases,however,MgZn phases disappear but intragranular Mg_(2)Cu and interdendritic MgZnCu phases appear in Mg-5Zn-Cu alloys.Besides,the grain size ofα-Mg phase is refined and the volume fraction of MgZnCu phase increases as the Cu content increases.Second,Cu addition is found to improve thermal conductivity of Mg-5Zn alloy remarkably.Especially,Mg-5Zn-4Cu alloy exhibits the best thermal conductivity of 124 W/(m·K),which is mainly due to the significant reduction in both solid solubility of Zn in theα-Mg matrix and lattice distortion ofα-Mg matrix.Moreover,a stable crystal structure of MgZnCu phase also contributes to an increased thermal conductivity based on first principles and molecular dynamics simulations.Third,Cu addition simultaneously enhances strength and ductility of Mg-5Zn alloy.Tensile yield strength and elongation of Mg-5Zn-6Cu alloy reach 117 MPa and 18.0%,respectively,which is a combined result of refinement,solution,second phase,and dislocation strengthening.Finally,combined with a phase field simulation,we found that Cu addition enhances metal fluidity of Mg-5Zn alloy.On the one hand,Cu alloying not only delays dendrite growth but also prolongs solidification time.On the other hand,MgZnCu phase stabilizes the dendrite growth of theα-Mg phases by reducing energy consumption during solidification of liquid metal.This work demonstrates that Cu alloying is an ideal strategy for synergistically improving the thermal conductivity,mechanical performance and metal fluidity of Mg-based alloys.展开更多
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
Three nanocrystalline alloys, Fe50Al50, Fe42.5Al42.5Ti5B10 and Fe35Al35Ti10B20 (molar fraction, %), were synthesized from elemental powders by high-energy ball milling. The structural evolutions and morphological chan...Three nanocrystalline alloys, Fe50Al50, Fe42.5Al42.5Ti5B10 and Fe35Al35Ti10B20 (molar fraction, %), were synthesized from elemental powders by high-energy ball milling. The structural evolutions and morphological changes of the milled powders were characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). The effects of different Ti, B additions on the structure and phase transformation in these alloys were also discussed. It is observed that the diffusion of Al, Ti, B atoms into Fe lattice occurs during milling, leading to the formation of a BCC phase identified as Fe(Al) or Fe(Al, Ti, B) supersaturated solid solution. Fe-based solid solution with nanocrystalline structure is observed to be present as the only phase in all the alloy compositions after milling. Furthermore, the contents of Ti, B affect the formation of mechanical alloying products, changes in the lattice parameter as well as the grain size.展开更多
基金Project(BK2005128) supported by the Natural Science Foundation of Jiangsu Province, China
文摘A binary Fe-Al alloyed layer was synthesized on 45 steel by means of double glow plasma surface alloying technique. The corrosion-resisting layer prepared is composed of a sedimentary layer and a diffusion layer, with a total thickness of about 180 μm. The aluminum content of the alloyed layer shows gradual change from surface to the inside of substrate. The ideal profile is beneficial to the metallurgical bonding of the surface alloying layer with substrate materials. The microstructure of both layers consists of the Fe-Al intermetallic compound, which is FeAl with B2 structure in the sedimentary layer and Fe3Al with incompletely ordered DO3 structure in the diffusion layer. The protective film exhibits high micro-hardness. In comparison with the substrate of 45 steel, the corrosion resistance of the aluminized sample is much higher in 2.0% Na2S and 0.05 mol/L Na2SO4 + 0.5 mol/L NaCl mixed solutions.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金supported by the Natural Science Foundation of China(Grant Nos.52022089,52372261,52288102,and 11964026)the National Key R&D Program of China(Grant No.2022YFA1402300)+5 种基金the Natural Science Foundation of Hebei Province(Grant No.E2022203109)the Doctoral Fund of Henan University of Technology(Grant No.31401579)P.L.thanks the Science and Technology Leading Talents and Innovation Team Building Projects of the Inner Mongolia Autonomous Region(Grant No.GXKY22060)financial support from the Spanish Ministry of Science and Innovation(Grant No.FIS2019-105488GB-I00)the Department of Education,Universities and Research of the Basque Government and the University of the Basque Country(Grant No.IT1707-22)the National Science Foundation(Grant No.DMR-2136038)for financial support.
文摘Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures.
基金supported by the Global Joint Research Program funded by the Pukyong National University(202411790001).
文摘Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems.
基金financially sponsored by the National Natural Science Foundation of China(Nos.51821001 and 51871148).
文摘Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected.
基金supported by the National Natural Natural Science Foundation of China(No.52271055)the Natural Science Foundation of Hebei Province,China(No.E2024202154).
文摘FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.
基金supported by Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application(No.ZDSYS20220527171407017)。
文摘Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.
基金supported by the National Natural Science Foundation of China(Nos.52201135,52271115,U23A6013,92360301,and U2330203)the 111 Project of China(No.BP2018008)+1 种基金the Shaanxi Province Innovation Team Project,China(No.2024RS-CXTD-58)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies and by the open research fund of Suzhou Laboratory。
文摘Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a purpose.In this paper,recent advances in lengthscale-dependent scandium (Sc) microalloying effects in Al-Cu model alloys are reviewed.In coarse-grained Al-Cu alloys,the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al_(2)Cu/matrix interface that reduces interfacial energy contribute significantly to θ′precipitation.By grain size refinement to the fine/ultrafine-grained scale,the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries,promoting the desired intragranular θ′precipitation.At nanocrystalline scale,the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu Sc,vacancy)-rich atomic complexes with high thermal stability,outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation.This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.:51901153)Shanxi Scholarship Council of China(Grant No.:2019032)+1 种基金Natural Science Foundation of Shanxi(Grant No.:202103021224049)the Science and Technology Major Project of Shanxi Province(Grant No.:20191102008,20191102007)。
文摘The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.
基金supported by National Natural Science Foundation of China(Nos.52375394,52275390,52305429)Shanxi Scholarship Council of China(No.2021-125)+1 种基金Natural Science Foundation of Shanxi Province(No.20210302124631)Key Research and Development Program of Shanxi Province(Nos.202102050201011,2022ZDYF035).
文摘Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal conductivity.Here,we investigate microstructure,mechanical performance,thermal conductivity and metal fluidity of Mg-5Zn(wt.%)alloy after Cu alloying by experimental and simulation methods.First,Mg-5Zn alloy consist ofα-Mg matrix and interdendritic MgZn phases.As the Cu content increases,however,MgZn phases disappear but intragranular Mg_(2)Cu and interdendritic MgZnCu phases appear in Mg-5Zn-Cu alloys.Besides,the grain size ofα-Mg phase is refined and the volume fraction of MgZnCu phase increases as the Cu content increases.Second,Cu addition is found to improve thermal conductivity of Mg-5Zn alloy remarkably.Especially,Mg-5Zn-4Cu alloy exhibits the best thermal conductivity of 124 W/(m·K),which is mainly due to the significant reduction in both solid solubility of Zn in theα-Mg matrix and lattice distortion ofα-Mg matrix.Moreover,a stable crystal structure of MgZnCu phase also contributes to an increased thermal conductivity based on first principles and molecular dynamics simulations.Third,Cu addition simultaneously enhances strength and ductility of Mg-5Zn alloy.Tensile yield strength and elongation of Mg-5Zn-6Cu alloy reach 117 MPa and 18.0%,respectively,which is a combined result of refinement,solution,second phase,and dislocation strengthening.Finally,combined with a phase field simulation,we found that Cu addition enhances metal fluidity of Mg-5Zn alloy.On the one hand,Cu alloying not only delays dendrite growth but also prolongs solidification time.On the other hand,MgZnCu phase stabilizes the dendrite growth of theα-Mg phases by reducing energy consumption during solidification of liquid metal.This work demonstrates that Cu alloying is an ideal strategy for synergistically improving the thermal conductivity,mechanical performance and metal fluidity of Mg-based alloys.
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金Project(050440704) supported by the Natural Science Foundation of Anhui Province, ChinaProject(103-037016) supported by the Technological Innovation Foundation of Hefei University of Technology, China
文摘Three nanocrystalline alloys, Fe50Al50, Fe42.5Al42.5Ti5B10 and Fe35Al35Ti10B20 (molar fraction, %), were synthesized from elemental powders by high-energy ball milling. The structural evolutions and morphological changes of the milled powders were characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). The effects of different Ti, B additions on the structure and phase transformation in these alloys were also discussed. It is observed that the diffusion of Al, Ti, B atoms into Fe lattice occurs during milling, leading to the formation of a BCC phase identified as Fe(Al) or Fe(Al, Ti, B) supersaturated solid solution. Fe-based solid solution with nanocrystalline structure is observed to be present as the only phase in all the alloy compositions after milling. Furthermore, the contents of Ti, B affect the formation of mechanical alloying products, changes in the lattice parameter as well as the grain size.