期刊文献+
共找到5,226篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of laser parameters on the microstructures and surface properties in laser surface modification of biomedical magnesium alloys
1
作者 Chee Ying Tan Cuie Wen Hua Qian Ang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期72-97,共26页
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi... Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique. 展开更多
关键词 BIOCOMPATIBILITY BIODEGRADABILITY Corrosion Implant applications Laser surface modification Magnesium alloys
下载PDF
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
2
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys Friction stir processing Metal matrix composites LIGHTWEIGHT surface modification
下载PDF
Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet
3
作者 Can Kang Shifeng Yan +2 位作者 Haixia Liu Jie Chen Kejin Ding 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2431-2442,共12页
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa... The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation. 展开更多
关键词 Cavitation erosion Al-Mg alloy liquid temperature mass loss surface morphology MICROHARDNESS
下载PDF
Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour
4
作者 Lizi Cheng Xiaofeng Zhang +7 位作者 Jiacheng Xu Temitope Olumide Olugbade Gan Li Dongdong Dong Fucong Lyu Haojie Kong Mengke Huo Jian Lu 《Nano Materials Science》 EI CAS CSCD 2024年第5期587-595,共9页
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie... Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials. 展开更多
关键词 Architected materials Selective laser melting surface mechanical attrition treatment Structural analysis Ductile alloy
下载PDF
Laser processing effects on Ti−45Nb alloy surface,corrosive and biocompatible properties
5
作者 I.CVIJOVIĆ-ALAGIĆ S.LAKETIĆ +5 位作者 M.MOMČILOVIĆ J.CIGANOVIĆ Đ.VELJOVIĆ J.BAJAT V.KOJIĆ M.RAKIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2533-2551,共19页
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme... The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment. 展开更多
关键词 Ti−45Nb alloy laser surface scanning electrochemical properties BIOCOMPATIBILITY cell morphology
下载PDF
Influence of Production Sequence of Aluminum Alloy Hot Rolling on Strip Surface Quality
6
作者 Hui Song Weixuan Jiang 《Frontiers of Metallurgical Industry》 2024年第1期12-14,共3页
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc... With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated. 展开更多
关键词 hot rolling production sequence surface quality aluminum alloy chromate treatment
下载PDF
Self-repairing functionality and corrosion resistance of in-situ Mg-Al LDH film on Al-alloyed AZ31 surface 被引量:2
7
作者 Yi-Xing Zhu Guang-Ling Song Peng-Peng Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1567-1579,共13页
A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of s... A novel Mg-Al LDH film was in-situ prepared hydrothermally in an alkaline aqueous solution on an Al-alloyed AZ31 substrate.The structural,chemical and functional characteristics of the film were explored by means of scanning electron microscope(SEM),X-ray diffraction(XRD),energy dispersive spectrometer(EDS),polarization curve,AC impedance and salt immersion tests,respectively.The anti-corrosion results indicated that the Mg-Al LDH film on the Al-alloyed AZ31 surface could effectively protect the AZ31 from corrosion attack even after 90 days of immersion in 3.5 wt.%NaCl solution.The protection performance is surprisingly better than most of the reported coatings on Mg alloys.More interestingly,when the Mg-Al LDH film was scratched,the exposed Al-alloyed surface might gradually release metal ions and re-generate dense LDH nano-sheets in the corrosive environment to inhibit the further corrosion there,exhibiting a self-repairing behavior.The combination of the benign long-term protection and desirable self-repairing performance in this new process of surface-alloying and LDH-formation may significantly extend the practical application of magnesium alloys. 展开更多
关键词 LDH film surface alloying Corrosion resistance SELF-REPAIRING
下载PDF
A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods 被引量:2
8
作者 Subrat Kumar Baral Manjusha M.Thawre +1 位作者 B.Ratna Sunil Ravikumar Dumpala 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期776-800,共25页
Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,wh... Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys. 展开更多
关键词 ZE41 magnesium alloy Bulk deformation surface modification Mechanical properties WEAR Corrosion
下载PDF
Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing:A review 被引量:2
9
作者 Hamed Mirzadeh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1278-1296,共19页
This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including si... This monograph presents an overview of friction stir processing(FSP)of surface metal-matrix composites(MMCs)using the AZ91 magnesium alloy.The reported results in relation to various reinforcing particles,including silicon carbide(SiC),alumina(Al_(2)O_(3)),quartz(SiO_(2)),boron carbide(B_(4)C),titanium carbide(TiC),carbon fiber,hydroxyapatite(HA),in-situ formed phases,and hybrid reinforcements are summarized.AZ91 composite fabricating methods based on FSP are explained,including groove filling(grooving),drilled hole filling,sandwich method,stir casting followed by FSP,and formation of in-situ particles.The effects of introducing second-phase particles and FSP process parameters(e.g.,tool rotation rate,traverse speed,and the number of passes)on the microstructural modification,grain refinement,homogeneity in the distribution of particles,inhibition of grain growth,mechanical properties,strength–ductility trade-off,wear/tribological behavior,and corrosion resistance are discussed.Finally,useful suggestions for future work are proposed,including focusing on the superplasticity and superplastic forming,metal additive manufacturing processes based on friction stir engineering(such as additive friction stir deposition),direct FSP,stationary shoulder FSP,correlation of the dynamic recrystallization(DRX)grain size with the Zener–Hollomon parameter similar to hot deformation studies,process parameters(such as the particle volume fraction and external cooling),and common reinforcing phases such as zirconia(ZrO_(2))and carbon nanotubes(CNTs). 展开更多
关键词 surface composites magnesium alloys friction stir processing severe plastic deformation thermomechanical processing
下载PDF
Recent advances in surface endothelialization of the magnesium alloy stent materials 被引量:1
10
作者 Changjiang Pan Xuhui Liu +7 位作者 Qingxiang Hong Jie Chen Yuxin Cheng Qiuyang Zhang Lingjie Meng Juan Dai Zhongmei Yang Lingren Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期48-77,共30页
Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor b... Magnesium and its alloy have good mechanical properties and biodegradability,and have become the hotspot of the next-generation biodegradable vascular stent materials.However,their rapid degradation in vivo and poor biocompatibility are still the bottlenecks of clinical applications for the cardiovascular stents.In particular,how to induce the repair and regeneration of the vascular endothelial with normal physiological functions on the surface of the magnesium alloy stent materials represents the key to its clinical application in the field of cardiovascular stents.It has been believed that it is an ideal way to completely solve the postoperative complications through constructing the multifunctional anti-corrosive bioactive coating on the magnesium alloy surface to induce the formation of vascular endothelium with normal physiological functions.However,how to construct a corrosion-resistant multifunctional bioactive coating with the good endothelial regeneration abilities on the magnesium alloy surface still faces a great challenge.This paper mainly focused on highlighting and summarizing the recent advances in the surface endothelialization of the magnesium alloy materials for the vascular stent,including the bio-inert coating,in-situ immobilization of bioactive molecules on the surface,polymer coating loaded with bioactive factors,novel multifunctional polymer coating,bioactive micropatterns,bioactive layer with glycocalyx-like structure,NO-releasing coating and bioactive sol-gel coating.The advantages and disadvantages of these strategies were discussed and analyzed.Finally,in the senses of future development and clinical application,this paper analyzed and summarized the development direction and prospect of surface endothelialization of the magnesium alloy vascular stents.It is anticipated that this review can give the new cues to the surface endothelialization of the cardiovascular magnesium alloy stents and promote future advancements in this field. 展开更多
关键词 Magnesium alloy STENT ENDOTHELIALIZATION surface coating surface modification
下载PDF
Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening 被引量:1
11
作者 金玉花 陈永昇 +2 位作者 马悦铭 王希靖 郭廷彪 《China Welding》 CAS 2023年第1期18-26,共9页
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa... The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications. 展开更多
关键词 7050 aluminum alloy surface compound modification fatigue crack propagation weld nugget zone
下载PDF
Effects of alloy elements on microstructure and crack resistance of Fe-C-Cr weld surfacing layer 被引量:6
12
作者 孙大谦 王文权 +1 位作者 宣兆志 任振安 《China Welding》 EI CAS 2003年第2期92-97,共6页
Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matri... Effects of alloy elements on the microstructure and crack resistance of Fe-C-Cr weld surfacing layer were investigated. The results show that microstructures of the layer mainly consist of carbides and austenite matrix. Increasing C and Cr contents impair the crack resistance of the layer due to increased amount of brittle carbides. The addition of Ni, Nb or Mo improves the crack resistance of Fe-C-Cr weld surfacing layer by increasing the amount of austenite and forming fine NbC or M 7C 3 carbides in the layer. But, the excessive Nb (>2.50wt%) or Mo (>1.88wt%) impairs the crack resistance of the layer, which has relation with increased carbides or carbide coarsening and austenite matrix solid solution strengthening. The proper combination of C, Cr, Ni, Nb and Mo can further improve not only the crack resistance of Fe-C-Cr weld surfacing layer but also the erosion resistance as a result of fine NbC and M 7C 3 carbides distributing uniformly in austenite matrix. The optimal layer compositions are 3.05wt%C, 20.58wt%Cr, 1.75wt%Ni, 2.00wt%Nb and 1.88wt%Mo. 展开更多
关键词 weld surfacing layer alloy element crack resistance
下载PDF
Effects of Alloying Elements on Microstructure and Erosion Resistance of Fe-C-Cr Weld Surfacing Layer 被引量:4
13
作者 Daqian SUN, Wenquan WANG, Zhaozhi XUAN, Yue XU and Zhenfeng ZHOUSchool of Materials Science and Engineering, Jilin University, Changchun 130025, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第4期351-354,共4页
Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resi... Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct). 展开更多
关键词 Weld surfacing layer alloying elements Erosion resistance
下载PDF
Effect of multifunction cavitation using phosphoric acid on fatigue and surface properties of AZ31 magnesium alloy
14
作者 Shunta Matsuoka Fumihiro Kato +2 位作者 Toshihiko Yoshimura Masataka Ijiri Shoichi Kikuchi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1996-2005,共10页
Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to fo... Magnesium alloy is attractive for lightweight construction but often suffers from poor corrosion resistance and low strength.Cavitation processing with chemicals,i.e.,multifunction cavitation(MFC),was introduced to form a high-corrosion film and improve the fatigue properties of an AZ31 magnesium alloy.Surface analysis and plane bending fatigue tests were conducted for the MFC-treated magnesium alloy at a stress ratio,R,of-1.The mechanical action of cavitation bubbles improved the fatigue life of magnesium alloys due to increasing the surface hardness and generating compressive residual stress.However,the combined mechanical and electrochemical action during MFC formed pits on the surface.These pits were large enough to easily nucleate an initial fatigue crack.In addition,the magnesium alloys without pit formation,for which a coating process using phosphoric acid was conducted after MFC using water,showed superior fatigue properties. 展开更多
关键词 Magnesium alloy Multifunction cavitation surface modification FATIGUE Residual stress
下载PDF
Effects of surface roughness on bending properties of rolled AZ31 alloy
15
作者 Gyo Myeong Lee Jong Un Lee Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1224-1235,共12页
This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were pe... This study investigated the effects of mechanical-polishing-induced surface roughness and the direction of polishing lines on the bending properties of a rolled AZ31 alloy.To this end,three-point bending tests were performed on one sample without polishing lines(SS sample)and two samples with polishing lines—one in which the polishing lines were parallel to the rolling direction(RS-RD sample)and the other in which they were parallel to the transverse direction(RS-TD sample).In all three samples,macrocracks were formed in the width direction on the outer surface,where tensile stress was predominantly generated in the longitudinal direction.However,the macrocracks formed in the SS sample were curved because of the merging of uniformly formed fine microcracks,whereas those formed in the RS-TD sample were linear owing to the formation of relatively coarse microcracks along the polishing lines.The bendability of the samples was in the order of SS>RS-RD>RS-TD,and their limiting bending depths were 4.8,4.6,and 4.4 mm,respectively.In the presence of mechanical-polishing-induced surface roughness,polishing lines perpendicular to the direction of the major stress(i.e.,tensile stress along the longitudinal direction)resulted in a greater degree of stress concentration on the outer surface of the bending specimen.This higher stress concentration promoted the formation of undesirable{10–11}contraction and{10–11}–{10–12}double twins—which typically act as crack initiation sites—and thereby facilitated crack generation and propagation.Consequently,the surface roughness caused premature fracture during bending deformation,which,in turn,caused deterioration of the bendability of the rolled Mg alloy. 展开更多
关键词 AZ31 alloy BENDING surface roughness Stress concentration CRACK
下载PDF
Evaluation of Surface Roughness of Aluminum Alloy in Burnishing Process Based on Chaos Theory
16
作者 Zhipeng Yuan Zhenyu Zhou +3 位作者 Zhiguo Jiang Zeyu Zhao Cong Ding Zhongyu Piao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期90-103,共14页
Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory ... Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing.The chaos theory was employed to investigate the nonlinear features of the burnishing system.The experimental results show that the power spectrum is broadband and continuous,and the Lyapunov exponentλis positive,proving that burnishing has chaotic characteristics.The chaotic characteristic parameter,the correlation dimension D,is sensitive to the time behavior of the system and is used to establish the corresponding relationship with the surface roughness.The correlation dimension was the largest,when the surface roughness was the smallest.Furthermore,when the correlation dimension curve decreases,the roughness curve increases.The correlation dimension and surface roughness exhibit opposite variation trends.The higher the correlation dimension,the lower the surface roughness.The surface roughness of the aluminum alloy can be characterized online by calculating the correlation dimension during burnishing. 展开更多
关键词 Aluminum alloy burnishing Power spectrum Correlation dimension Lyapunov exponent surface roughness
下载PDF
Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification
17
作者 Wen Zhang Ming-Chun Zhao +5 位作者 Zhenbo Wang Lili Tan Yingwei Qi Deng-Feng Yin Ke Yang Andrej Atrens 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2776-2788,共13页
Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example su... Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material. 展开更多
关键词 Mg-Cu alloy Gradient nanostructure BIODEGRADATION surface mechanical grinding treatment
下载PDF
FORMATION OF GRADIENT COATING OF Fe-BASED ALLOY WITH RARE EARTHS BY PLASMA SURFACING 被引量:1
18
作者 L.J.Shang A.Q.Sun +2 位作者 J.F.Chen C.M.Zhang Q.K.Cai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期713-718,共6页
A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), di... A gradient coating of Fe-based alloy was manufactured with rare earths (RE) by plasma surfacing on Q235 steel substrate. The coatings were studied by using X-ray diffraction(XRD), scanning electron microscope(SEM), differential thermal analyzer(DTA), and electron probe micro-analyzer (EPMA). The results show that the phases of the two kinds of coatings(with and without RE) both include α-Fe, Fe7C3, Fe3C, Cr2B, Fe2B and FeB. The microstructure of F314 coating is mainly hypereutectic, the pro-phases Cr7C3 and Cr2B are loose, crassi, spiculate and contain microcracks. The brittleness of the coating is high, and the average hardness is 787 HV. When 0.8wt% RE was added into the F314 alloy, the microstructure varied from hypoeutectic to hypereutectic continuously, The hardness appears as gradient distribution with the highest value of 773 HV, meanwhile, the brittleness decreases significantly. The formation of gradient structure depends on the fallowing factors: (i) the conversion of RE. The addition of RE lowers the elements point and Fe-C eutectic temperature, thus the base metal melting acutely. (ii) the heating of plasma arc. Graded temperature results in directional solidification, thus the gradient structure forms easily. The main reasons for the hardness decrease with RE addition in the alloy are the ratio of hard phase lowering and the hardness of the hard phase decreasing. 展开更多
关键词 rare earth plasma surfacing Fe-base alloy microstructure graded coating
下载PDF
Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review
19
作者 Arash Fattah-alhosseini Razieh Chaharmahali 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4390-4406,共17页
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce... The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes. 展开更多
关键词 Mg and its alloy Laser surface texturing Corrosion behavior PEO process
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
20
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy MICRO/NANOSTRUCTURE Ultraprecision diamond surface texturing Cutting force Chip morphology Structural color
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部