Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car...Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.展开更多
Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple...Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS)and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost.展开更多
基金supported by the National Natural Science Foundation of China (U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.
基金supported financially by the National Natural Science Foundation of China (No.51874051)the Natural Science Foundation of Guangxi Province (Nos.2015GXNSFAAI39283 and 2016GXNSFAA380107)
文摘Non-noble metal(NNM)catalysts have recently attracted intensive interest for their high catalytic performance towards oxygen reduction reaction(ORR)at low cost.Herein,a novel NNM catalyst was synthesized by the simple pyrolysis of carbon black,urea and a Fe-containing precursor,which exhibits excellent ORR catalytic activity,superior durability and methanol tolerance versus the Pt/C catalyst in both alkaline and acidic solutions.Scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray diffraction(XRD)characterizations demonstrate that the product is a nitrogen-doped hybrid of graphite encapsulated Fe/Fe3C nanoparticles and carbon black.X-ray photoelectron spectrum(XPS)and electrochemical analyses indicate that the catalytic performance and chemical stability correlate closely with a nitrogen-rich layer on the Fe/Fe3C nanoparticle after pyrolysis with presence of urea,leading to the same four-electron pathway towards ORR as the Pt/C catalyst.The hybrid is prospective to be an efficient ORR electrocatalyst for direct methanol fuel cells with high catalytic performance at low cost.