Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results...Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.展开更多
After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in ...After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in A1-Zn fee solid solution containing high Zn contents is remarkably decreased due to the small addition of Cu. Also, the interdiffusion coefficient in A1-Zn fee solid solution clearly increases with the increasing of Zn concentration. The interdiffusion activity energy remarkably decreases with the increasing of Zn contents. On the other hand, the interdiffusion activity energy markedly increases due to the small addition of Cu in the A1 Zn fcc solid solution containing high Zn contents.展开更多
Precise determination of cation diffusivity in garnet can provide critical information for quantitatively understanding the timescales and thermodynamics of various geological processes,but very few studies have been ...Precise determination of cation diffusivity in garnet can provide critical information for quantitatively understanding the timescales and thermodynamics of various geological processes,but very few studies have been performed for Fe-Mn interdiffusion.In this study,Fe-Mn interdiffusion rates in natural single crystals of Mn-bearing garnet with 750 ppm H2O are determined at 6 GPa and 1273-1573 K in a Kawai-type multi-anvil apparatus.Diffusion profiles were acquired by electron microprobe and fitted using Boltzmann-Matano equation.The experimental results show that the Fe-Mn interdiffusion coefficient(DFe-Mn)slightly decreases with increasing XFe.The experimentally determined DFe-Mn in Mn-bearing garnet can be fitted by the Arrhenius equation:DFe-Mn(m2/s)=D0XFenexp(-E*/RT),where E*=(1-XFe)E*Mn+XFeE*Fe,D0=8.06-6.04+9.87×10-9 m2/s,E*Mn=248±27 KJ/mol,E*Fe=226±59 KJ/mol,n=-1.36±0.51.The comparing the present results with previous experimental data suggest that water can greatly enhance the DFe-Mn in garnet.Our results indicate that the time required for homogenization of the compositional zoning of a garnet is much shorter than previously thought.展开更多
文摘Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.
文摘After diffusion couples were annealed at 260-360 ℃, the concentration profiles of Zn element were measured by EPMA. It has been first quantitatively determined by Matano method that the interdiffusion coefficient in A1-Zn fee solid solution containing high Zn contents is remarkably decreased due to the small addition of Cu. Also, the interdiffusion coefficient in A1-Zn fee solid solution clearly increases with the increasing of Zn concentration. The interdiffusion activity energy remarkably decreases with the increasing of Zn contents. On the other hand, the interdiffusion activity energy markedly increases due to the small addition of Cu in the A1 Zn fcc solid solution containing high Zn contents.
基金supported by the National Natural Science Foundation of China (41973056,41773056)Key Research Program of Frontier Sciences of CAS (ZDBS-LY-DQC015)to B.Zhang+1 种基金the Fundamental Research Funds for the Central Universities (K20210168)Data presented as part of this study are available from Zenodo (https://doi.org/10.5281/zenodo.7080353).
文摘Precise determination of cation diffusivity in garnet can provide critical information for quantitatively understanding the timescales and thermodynamics of various geological processes,but very few studies have been performed for Fe-Mn interdiffusion.In this study,Fe-Mn interdiffusion rates in natural single crystals of Mn-bearing garnet with 750 ppm H2O are determined at 6 GPa and 1273-1573 K in a Kawai-type multi-anvil apparatus.Diffusion profiles were acquired by electron microprobe and fitted using Boltzmann-Matano equation.The experimental results show that the Fe-Mn interdiffusion coefficient(DFe-Mn)slightly decreases with increasing XFe.The experimentally determined DFe-Mn in Mn-bearing garnet can be fitted by the Arrhenius equation:DFe-Mn(m2/s)=D0XFenexp(-E*/RT),where E*=(1-XFe)E*Mn+XFeE*Fe,D0=8.06-6.04+9.87×10-9 m2/s,E*Mn=248±27 KJ/mol,E*Fe=226±59 KJ/mol,n=-1.36±0.51.The comparing the present results with previous experimental data suggest that water can greatly enhance the DFe-Mn in garnet.Our results indicate that the time required for homogenization of the compositional zoning of a garnet is much shorter than previously thought.
基金This work was financially supported by the National Natural Science Foundation for Youth of China(No.51701083)the Guangzhou Science and Technology Association Young Talent Lifting Project,China(No.X20210201054)+1 种基金the Open Fund of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,China(No.HKDNM201903)the National Key Research and Development Project,China(No.2020YFC1107202).