X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of...X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of X-ray diffraction patterns were studied both before and after chemically selective dissolution. It was found that lithiophorite was a common Mn oxide in all examined Fe-Mn nodules. Todorokite, however, was a predominant Mn oxide in Fe-Mn nodules in caf-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules of arp-udic Luvisols in Wuhan and Zaoyang, Hubei Province, contained birnessite and vernadite. Hollandite was found in Fe-Mn nodules of alt-udic Ferrisols of Yizhang, Hunan Province; arp-udic Luvisols of Zaoyang, Hubei Province; and cal-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules in alt-udic Ferrisols of Guiyang, Hunan Province, had a few coronadites. Mineralogy of Mn oxide minerals in soil Fe-Mn nodules was related to soil environment, soil types and quantities of relevant cations.展开更多
Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous...Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.展开更多
Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for...Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).展开更多
The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd^2+, Cu^2+ and Pb^2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity to...The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd^2+, Cu^2+ and Pb^2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd^2+, Cu^2+ and Pb^2+ were 1.23, 2.25 and 2.60 mmol· g^-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18mmol·g^-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g^-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlieh adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnOa surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.展开更多
The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides(FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. ...The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides(FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2(prepared at different activation temperatures) having high specific surface areas(358.87 and 128.58 m^2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10 μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudo first-order model, pseudo second-order model, Elovich model and intraparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(Ⅲ) increased in the p H range of 2–3 while it decreased with the increase of pH( 3〈pH〈10). The effects of coexisting anions on As(Ⅲ) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO_3^-, Cl-, F-〈SO_4^(2-), HCO_3-〈H_2PO_4^-, indicating that H_2PO_4^- is the major competitor with As(Ⅲ) for adsorptive sites on the surface of the adsorbents. The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(Ⅲ) from groundwater.展开更多
基金Project(No.49771049)supported by the National Natural Science Foundation of China
文摘X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of X-ray diffraction patterns were studied both before and after chemically selective dissolution. It was found that lithiophorite was a common Mn oxide in all examined Fe-Mn nodules. Todorokite, however, was a predominant Mn oxide in Fe-Mn nodules in caf-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules of arp-udic Luvisols in Wuhan and Zaoyang, Hubei Province, contained birnessite and vernadite. Hollandite was found in Fe-Mn nodules of alt-udic Ferrisols of Yizhang, Hunan Province; arp-udic Luvisols of Zaoyang, Hubei Province; and cal-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules in alt-udic Ferrisols of Guiyang, Hunan Province, had a few coronadites. Mineralogy of Mn oxide minerals in soil Fe-Mn nodules was related to soil environment, soil types and quantities of relevant cations.
基金supported by the Fund for the Creative Research Groups of China (No. 50921064)the Special Co-construction Project of Beijing Municipal Commission of Education
文摘Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.
基金supported by the National Key Research and Development Project of China(No.2016YFD0800706)the Science and Technology Project of Fujian Province of China(No.2018Y0080)the Science and Technology Project of Xiamen(No.3502Z20172026)
文摘Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).
文摘The adsorption potential of FMBO, FeOOH, MnO2 for the removal of Cd^2+, Cu^2+ and Pb^2+ in aqueous systems was investigated in this study. Comparing to FMBO and FeOOH, MnO2 offered a much higher removal capacity towards the three metal ions. The maximal adsorption capacity of MnO2 for Cd^2+, Cu^2+ and Pb^2+ were 1.23, 2.25 and 2.60 mmol· g^-1, respectively. And that for FMBO were 0.37, 1.13, and 1.18mmol·g^-1 and for FeOOH were 0.11, 0.86 and 0.48 mmol·g^-1, respectively. The adsorption behaviors of the three metal ions on the three adsorbents were all significantly affected by pH values and heavy metal removal efficiency increased with pH increased. The Langmuir and Freundlieh adsorption models were used to describe the adsorption equilibrium of the three metal ions onto the three adsorbents. Results showed that the adsorption equilibrium data fitted well to Langmuir isotherm and this indicated that adsorption of metal ions occurred on the three metal oxides adsorbents limited to the formation of a monolayer. More negative charged of MnOa surface than that of FMBO and FeOOH could be ascribed by lower pHiep of MnO2 than that of FMBO and FeOOH and this could contribute to more binding sites on MnO2 surface than that of FMBO and FeOOH. The higher metal ions uptake by MnO2 than FMBO and FeOOH could be well explained by the surface charge mechanism.
基金supported by the National Natural Science Foundation of China(No.41120124003)the Ministry of Science and Technology of China(No.2012AA062602)the 111 project and Priority Development Projects of SRFDP of the Ministry of Education of China
文摘The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides(FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2(prepared at different activation temperatures) having high specific surface areas(358.87 and 128.58 m^2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10 μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudo first-order model, pseudo second-order model, Elovich model and intraparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(Ⅲ) increased in the p H range of 2–3 while it decreased with the increase of pH( 3〈pH〈10). The effects of coexisting anions on As(Ⅲ) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO_3^-, Cl-, F-〈SO_4^(2-), HCO_3-〈H_2PO_4^-, indicating that H_2PO_4^- is the major competitor with As(Ⅲ) for adsorptive sites on the surface of the adsorbents. The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(Ⅲ) from groundwater.