Fe-Mn-C-Al alloys have been recognized as promising materials for certain low-temperature applications due to their exceptional mechanical properties and cost-effectiveness.However,their limited low-temperature toughn...Fe-Mn-C-Al alloys have been recognized as promising materials for certain low-temperature applications due to their exceptional mechanical properties and cost-effectiveness.However,their limited low-temperature toughness restricts their large-scale applications in specific scenarios.The influence of trace amounts of rare earth cerium(Ce)on the low-temperature toughness of Fe-18Mn-0.6C-1.8Al alloys was investigated.The addition of Ce effectively alters the inclu-sions in the alloy,transforming large-sized irregular inclusions into fine ellipsoidal rare earth inclusions.This leads to a significant reduction in both the proportion and average size of the inclusions,resulting in their effective dispersion throughout the matrix and improved cryogenic performance.The presence of Ce-containing inclusions within the matrix reduces stress concentration,thereby inhibiting microcrack formation and improving impact absorption energy.Specifi-cally,the addition of rare earth Ce alters the fracture behavior of the material at room temperature and low temperature,changing from brittle cleavage fracture to a more ductile failure mode.The impact toughness of the Fe-Mn-C-Al alloy is significantly improved by the addition of 0.0048 wt.%Ce,particularly at-196℃where the impact toughness reaches 103.6 J/cm^(2),representing an impressive improvement of 87.3%.展开更多
汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量...汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52164032)the Hong Kong Scholars Program(2021-077).
文摘Fe-Mn-C-Al alloys have been recognized as promising materials for certain low-temperature applications due to their exceptional mechanical properties and cost-effectiveness.However,their limited low-temperature toughness restricts their large-scale applications in specific scenarios.The influence of trace amounts of rare earth cerium(Ce)on the low-temperature toughness of Fe-18Mn-0.6C-1.8Al alloys was investigated.The addition of Ce effectively alters the inclu-sions in the alloy,transforming large-sized irregular inclusions into fine ellipsoidal rare earth inclusions.This leads to a significant reduction in both the proportion and average size of the inclusions,resulting in their effective dispersion throughout the matrix and improved cryogenic performance.The presence of Ce-containing inclusions within the matrix reduces stress concentration,thereby inhibiting microcrack formation and improving impact absorption energy.Specifi-cally,the addition of rare earth Ce alters the fracture behavior of the material at room temperature and low temperature,changing from brittle cleavage fracture to a more ductile failure mode.The impact toughness of the Fe-Mn-C-Al alloy is significantly improved by the addition of 0.0048 wt.%Ce,particularly at-196℃where the impact toughness reaches 103.6 J/cm^(2),representing an impressive improvement of 87.3%.
文摘汽车行业的迅速发展使得能源消耗、环境污染等问题日益严重,而开发高强度且轻量化的汽车用钢对节能减排具有重要意义。目前正在研发的第三代先进高强钢包括轻质(Lightweight)钢、Q&P(Quenching and partitioning)钢和中锰钢(Mn质量分数为5%~10%)。其中,Fe-Mn-Al-C系低密度高强钢由于Al元素的加入,在密度降低的同时保持着良好的力学性能,满足第三代汽车用钢对轻量化的要求。同时,由于大量Al、Mn和C元素的添加,Fe-Mn-Al-C系低密度钢的冶炼连铸、微观结构、变形机制、加工过程及应用性能与传统钢种大不相同。本文系统阐述了Fe-Mn-Al-C系低密度钢的成分设计及其中合金元素的作用,介绍了低密度钢的微观组织结构特征;重点讨论了单一铁素体钢、奥氏体基钢、奥氏体基双相钢和铁素体基双相钢的各种强韧化机制,包括固溶强化、细晶强化、沉淀强化及其独特的应变硬化机制,如相变诱导塑性(TRIP)、孪晶诱导塑性(TWIP)、微带诱导塑性(MBIP)、剪切带诱导塑性(SIP)和动态滑移带细化(DSBR)等;并就层错能(SFE)对奥氏体钢变形机制产生的影响进行了总结;最后,对Fe-Mn-Al-C系低密度钢的强韧化机制研究进行展望,为后续研究者的工作提供参考。